
Introduction	to	Cyber	Security
Week	2:	Cryptography

Ming	Chow	(mchow@cs.tufts.edu)
Twitter:	@0xmchow

Learning	Objectives

• By	the	end	of	this	week,	you	will	be	able	to:
• Understand	the	difference	between	symmetric	and	asymmetric	cryptography
• Understand	and	use	one-way	hash	functions
• Understand	how	Transport	Layer	Security	(TLS)	works
• Understand	how	and	how	not	to	store	users'	passwords

Why	Cryptography?

• To	put	it	quite	simply,	it	is	the	backbone	of	Cyber	Security,	critical	for	
protecting	information	(confidentiality	and	integrity)
• Week	1	on	networking	and	attacking	networks	alluded	to	the	
importance	of	Cryptography
• Imagine	a	world	without	Cryptography.	Imagine	your	usernames,	passwords,	
credit	card	numbers,	messages,	secrets,	account	details,	personal	
information,	emails,	etc.	were	all	transmitted	over	a	computer	network	in	
plaintext,	unencrypted

Warning

• This	week	is	not	a	comprehensive	study	on	Cryptography
• Cryptography	stands	as	a	course	and	field	of	its	own
• While	Cryptography	is	critical	in	Cyber	Security,	Cryptography	and	
Cyber	Security	are	not	the	same.		Some	academic	institutions	still	
teach	Cyber	Security	as	Cryptography.	There	is	a	lot	more	to	Cyber	
Security	than	Cryptography.

Definitions

• Cryptography - The	process	of	communicating	secretly	through	the	use	of	
cipher
• Cryptanalysis - The	process	of	cracking	or	deciphering;	code	breaking
• Cryptology - The	study	of	cryptography	or	cryptanalysis
• Cleartext /	plaintext - What	you	are	reading	now
• Encrypt - convert	information	or	data	into	code	to	prevent	unauthorized	
access
• Decrypt – convert	an	encoded	or	unclear	message	into	something	
intelligible,	to	plaintext
• Cipher - An	algorithm	to	perform	encryption	and/or	decryption
• Cryptosystem - Suite	of	algorithms	to	perform	encryption	and/or	
decryption

The	Golden	Rule

• “Don’t	roll	your	own	crypto”
• The	reason:	https://security.stackexchange.com/questions/18197/why-
shouldnt-we-roll-our-own
• “Anyone,	from	the	most	clueless	amateur	to	the	best	cryptographer,	can	
create	an	algorithm	that	he	himself	can't	break.	It's	not	even	hard.	What	is	
hard	is	creating	an	algorithm	that	no	one	else	can	break,	even	after	years	
of	analysis.	And	the	only	way	to	prove	that	is	to	subject	the	algorithm	to	
years	of	analysis	by	the	best	cryptographers	around.”	–Bruce	Schneier
• Snake	oil:	https://www.schneier.com/crypto-
gram/archives/1999/0215.html#snakeoil

Ancient	History:	Caesar	Cipher
• A	substitution	cipher
• “Each	letter	in	the	original	message	(plaintext)	
is	replaced	with	a	letter	corresponding	to	a	
certain	number	of	letters	up	or	down	in	the	
alphabet.”

• In	this	way,	a	message	that	initially	was	quite	
readable,	ends	up	in	a	form	that	can	not	be	
understood	at	a	simple	glance.

• Source:	
https://learncryptography.com/classical-
encryption/caesar-cipher

• The	purpose	of	this:	what	if	a	messenger	for	
Julius	Caesar	got	mugged	or	murdered	and	
the	message	that	was	supposed	to	be	
delivered	to	another	party	got	intercepted	or	
stolen	by	enemy?

Security	of	a	Cryptosystem

• The	only	perfectly	secure	algorithm	is	the	One-Time	Pad
• Is	any	crypto	algorithm	perfectly	secure?
• Tradeoff	1:	the	cost	of	breaking	a	cipher	exceeds	the	value	of	the	
encrypted	information
• Tradeoff	2:	the	time	required	to	break	the	cipher	exceeds	the	useful	
lifetime	of	the	information
• Very	difficult	to	estimate	cost	and	time	required	to	break	a	cipher		

• There	is	always	brute	force
• ...and	then	there	is	plain-old	stealing	or	just	asking	for	it

One-Time	Pad	(OTP)

• Invented	in	1917
• Impossible	to	crack
• The	secret	key	(the	cipher),	with	random	data,	must	be	the	same	length	as	
the	plaintext
• Assume	"A"	=	0,	"B"	=	1,	"C"	=	2,	etc.
• Simple	to	use:	just	XOR,	modular	addition

• https://www.khanacademy.org/computing/computer-
science/cryptography/modarithmetic/e/modular-addition

• Encryption:	addition,	mod	26
• Decryption:	subtraction,	if	result	is	negative,	add	26	and	mod	26		
• Rather	impractical

Algorithms

• Hash	functions	- one	way	encryption,	no	decryption	thus	no	secret	key
• MD5	(insecure)
• SHA1	(insecure),	SHA256,	SHA512

• Symmetric	- single	key	for	encryption	and	decryption
• DES
• AES
• RC4

• Asymmetric	a.k.a.,	public	key	- uses	two	different	keys:	one	public	(for	
encryption)	and	one	private	(for	decryption)
• Diffie-Hellman
• RSA

Base64
• NOT	encryption!
• An	encoding	scheme	of	representing	binary	data	using	only	printable	(text)	characters

• Example:	an	image	(JPG,	PNG)	contains	binary	data.	Convert	the	binary	data	to	text	characters.	https://www.base64-
image.de/

• RFC	4648:	https://www.ietf.org/rfc/rfc4648.txt
• Operations:	encode	and	decode

• https://www.base64decode.org/
• Example:	hello encoded	in	Base64	is	aGVsbG8=.	The	“=”	at	the	end	of	encoding	serves	as	padding.

• Many	programming	languages	include	a	Base64	library
• Has	an	important	place	in	Cyber	Security

• Used	quite	a	bit,	including	for	HTTP	Basic	Authentication

• References:
• https://en.wikipedia.org/wiki/Basic_access_authentication
• https://stackoverflow.com/questions/201479/what-is-base-64-encoding-used-for
• https://stackoverflow.com/questions/4070693/what-is-the-purpose-of-base-64-encoding-and-why-it-used-in-http-basic-

authentica
• https://stackoverflow.com/questions/6916805/why-does-a-base64-encoded-string-have-an-sign-at-the-end

Hash	Functions

• Maps	a	variable	length	string	of	data	to	produce	a	fixed-length	output	
in	deterministic,	public,	and	random	manner
• No	secret	key
• Properties	of	a	perfect	hash	function	(recall	properties	of	a	hash	
function	for	hash	tables	in	a	Data	Structures	course):
• One-way:	cannot	decrypt
• No	collisions:	two	unique	strings	cannot	produce	the	same	result
• Randomness
• Unfeasible	to	produce	the	whole	hash	space	(pre-image	resistance)
• Given	a	hash	result,	unfeasible	to	produce	the	string

Hash	Functions:	Tradeoffs

• Strengths:
• Verifying	integrity

• Weaknesses:
• MD5	(128-bit	hash	value)	is	broken	--not	collision-resistant	(two	researchers	
created	two	files	that	shared	the	same	hash	value).	Read:	
• http://www.cs.colorado.edu/~jrblack/papers/md5e-full.pdf
• http://eprint.iacr.org/2004/199.pdf

• SHA1	(160-bit	hash	value)	is	broken	–badly;	big	news	in	February	2017
• http://www.schneier.com/blog/archives/2005/02/sha1_broken.html,
• http://www.schneier.com/blog/archives/2005/02/cryptanalysis_o.html
• https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html
• https://shattered.io/

Hash	Function	Applications

• Password	storage
• Checksum	of	software	packages
• Digital	signatures
• Commits	in	Git which	use	SHA-1

• https://gist.github.com/masak/2415865

Example:	Verifying	the	integrity	of	a	
download
1. Let’s	download	the	popular	VLC	Media	Player	for	Windows	(64-bit)	at	

https://get.videolan.org/vlc/2.2.6/win64/vlc-2.2.6-win64.exe
2. Most	software	downloads	will	provide	a	checksum.	For	this	version	of	

VLC,	we	see	SHA-256	checksum:	
21670eae2c8041d6f26667c664f97e8931f5977225bcc3c146902beb2630
5ed2

3. On	Linux	or	Mac	OS	X	terminal,	run	the	following	in	the	folder	where	the	
vlc-2.2.6-win64.exe	file	is:	shasum -a 256 vlc-2.2.6-
win64.exe.	Result should match	the checksum provided on	the
website.	If result does	NOT	match,	either a	tampered download	or	
corrupted download	–both not good!

Symmetric	Algorithms
• One	key	for	encryption	and	decryption
• Let	K	=	secret	key	(think	password),	C	=	Ciphertext,	P	=	Plaintext,	E	=	Encrypt	function,	D	=	Decrypt	function
• C	=	Ek(P)
• P	=	Dk(C)
• Example:	One-Time	Pad
• Applications

• Password	protect	a	ZIP	file	–which	uses	AES:	https://security.stackexchange.com/questions/35818/are-password-protected-
zip-files-secure

• Strengths:	
• Modified	key	K	will	result	in	garbage	plaintext	in	decryption
• Fast!

• Weaknesses:	
• Those	who	know	K	can	participate	in	communications	(eavesdropping)
• Impersonation	attack	if	attacker	knows	K
• Not	good	for	authenticity

Asymmetric	Algorithms	a.k.a.	Public	Key	
Algorithms
• Two	keys

• Public	key:	which	anyone	can	have,	can	be	distributed	publicly
• Private	key:	only	you	should	have

• How	it	works:
• Alice	and	Bob	agree	on	a	public-key	cryptosystem
• Alice	and	Bob	have	their	own	public	and	private	keys
• Alice	gives	Bob	her	public	key
• Bob	encrypts	message	with	Alice's	public	key	Alice	decrypts	the	message	with	her	private	key
• Even	better:	key	signing	(encrypt	message	with	own	private	key)

• Arguably	the	most	popular	algorithm:	RSA.	Walkthough:	http://www.di-mgt.com.au/rsa_alg.html
• Strengths:

• Public	key	can	be	distributed	any	way	possible
• Confidentiality:	only	holder	of	private	key	can	decrypt	message
• Integrity:	any	modification	of	the	message	would	be	revealed	when	decrypting
• Non	repudiation:	Bob	can	prove	to	a	third	party	that	Alice	is	the	originator	of	the	message

• Weakness:
• No	authentication:	anyone	can	encrypt	a	message	given	a	public	key
• Man-in-the-Middle	(MitM)	attack

Asymmetric	Algorithms	Applications

• Secure	Socket	Layer	(SSL)	now	Transport	Layer	Security	(TLS)
• SSH	and	SSH	Keys

• Why:	“SSH	keys	provide	a	more	secure	way	of	logging	into	a	virtual	private	server	with	SSH	
than	using	a	password	alone.	While	a	password	can	eventually	be	cracked	with	a	brute	force	
attack,	SSH	keys	are	nearly	impossible	to	decipher	by	brute	force	alone.	Generating	a	key	pair	
provides	you	with	two	long	string	of	characters:	a	public	and	a	private	key.	You	can	place	the	
public	key	on	any	server,	and	then	unlock	it	by	connecting	to	it	with	a	client	that	already	has	
the	private	key.	When	the	two	match	up,	the	system	unlocks	without	the	need	for	a	
password.	You	can	increase	security	even	more	by	protecting	the	private	key	with	a	
passphrase.”	https://www.digitalocean.com/community/tutorials/how-to-set-up-ssh-keys--2

• Generating	a	new	SSH	key	for	GitHub:	https://help.github.com/articles/connecting-to-github-
with-ssh/

• PGP	(Pretty	Good	Privacy)
• GPG	formerly	known	as	OpenPGP
• Bitcoin

Passwords	and	Password	Cracking

• Question:	How	long	is	your	
password	good	for?	30	days?	60	
days?	90	days?
• Answer:	As	long	as	it	is	not	
broken
• The	bottom	line:	it	will	only	be	a	
matter	of	when,	not	if,	your	
password	will	be	broken

Cracking	Passwords	on	a	Linux	System

• Two	files	of	interest	on	a	typical	Linux	box:	
• /etc/passwd - Contains	users'	information	but	no	encrypted	password;	
required	for	login

• /etc/shadow - Contains	users'	passwords	(encrypted)	with	additional	
details	relating	to	the	password	(see	http://tldp.org/LDP/lame/LAME/linux-
admin-made-easy/shadow-file-formats.html for	more	details)

• Methods:	
• Brute-force
• Wordlists
• Rainbow	tables.	See	http://project-rainbowcrack.com/ for	example.

Tool:	John	the	Ripper	(JtR)
• http://www.openwall.com/john/
• Step	1:	merge	the	/etc/passwd and	/etc/shadow files	via	unshadow tool	provided	with	JtR,	save	
result	to	a	text	file	(e.g.,	crackme.txt)
• unshadow passwd shadow > crackme.txt

• Format	of	a	password	hash	in	an	unshadowed file:
• $algorithm$salt$hash where	$algorithm$means	one	of	the	following:

• 1	=	MD5
• 2	=	Blowfish
• 5	=	SHA-256	
• 6	=	SHA-512

• Example:	
msfadmin:1XN10Zj2c$Rt/zzCW3mLtUWA.ihZjA5/:1000:1000:msfadmin,,,:/home/msfadmin:/bi
n/bash

• Password	Salt - random	data	as	an	additional	input	to	a	one-way	function	that	hashes	a	password	or	passphrase.	The	
primary	function	of	a	salt	is	to	defend	against	dictionary	attacks	or	a	pre-computed	rainbow	table	attack.		In	other	words,	to	
make	a	common	password	uncommon.

• Step	2:	run	john crackme.txt to	start	cracking	passwords
• “If	valid	password	files	are	specified	but	no	options	are	given,	John	will	go	through	the	default	selection	of	cracking	modes

with	their	default	settings.”	http://www.openwall.com/john/doc/OPTIONS.shtml

Cracking	Passwords	Using	Wordlists

• Daniel	Miessler maintains	a	fantastic	set	of	wordlists	and	other	lists	at	
https://github.com/danielmiessler/SecLists
• Wordlist	mode	in	JtR:	john --wordlist=<FILE>
crackme.txt

Additional	Passwords	Crackers

• L0phtCrack	(commercial;	http://www.l0phtcrack.com/)
• Cain	&	Abel	(http://www.oxid.it/cain.html)
• Hashcat (https://hashcat.net/hashcat/)
• THC	Hydra	(free	and	open	source)

Transport	Layer	Security	(TLS)

• Why?	HTTPS	is	HTTP	inside	of	a	TLS	session
• Uses	BOTH	symmetric	and	asymmetric	crypto
• Secure	communications	between	two	parties	over	a	network
• On	top	of	TCP
• Different	port	numbers	used	for	TLS	connection.		Port	443	for	HTTPS
• Part	1:	Data	between	two	parties	encrypted	via	symmetric	crypto.		Why?	Speed
• Part	2:	Identity	of	communicating	parties	identified	via	asymmetric	crypto
• Connection	integrity	via	message	integrity	check	using	a	message	authentication	code
• Digital	certificates - assert	the	online	identities	of	individuals,	computers,	and	other	
entities	on	a	network
• They	are	issued	by	certification	authorities	(CAs)	that	must	validate	the	identity	of	the	certificate-
holder	both	before	the	certificate	is	issued	and	when	the	certificate	is	used.

• Specification:	https://technet.microsoft.com/en-us/library/cc776447(v=ws.10).aspx

TLS	Process

1. Client	connects	to	TLS-enabled	server.	Client	requesting	a	secure	connection	
and	presents	a	list	of	supported	cipher	suites	(ciphers	and	hash	functions).

2. The	server	checks	what	the	highest	SSL/TLS	version	is	that	is	supported	by	
them	both,	picks	a	ciphersuite from	one	of	the	client's	options	(if	it	supports	
one),	and	optionally	picks	a	compression	method.

3. The	server	sends	back	its	identification	via	digital	certificate	(THIS	MAY	NOT	
HAPPEN)

4. Client	confirms	validity	of	certificate	--or	NOT!
5. Both	the	server	and	the	client	can	now	compute	the	session	key	(or	shared	

secret)	for	the	symmetric	encryption	and	decryption	of	the	data.		This	
computation	of	the	session	key	is	known	as	Diffie-Hellman	key	exchange.

6. "The	client	tells	the	server	that	from	now	on,	all	communication	will	be	
encrypted,	and	sends	an	encrypted	and	authenticated	message	to	the	server."

Diffie-Hellman	Key	Exchange

• The	idea:	two	parties	(say	Alice	and	
Bob	--tradition)	exchanging	
cryptographic	keys	(or	shared	
secret)	via	public	and	insecure	
channel	to	use	to	do	further	
encryption
• Explanation	in	plain	English:	
https://security.stackexchange.com
/questions/45963/diffie-hellman-
key-exchange-in-plain-english
• Explanation	via	“paint	analogy”	
(image	source:	Wikipedia)

References	on	TLS

• https://security.stackexchange.com/questions/20803/how-does-ssl-
tls-work
• https://stackoverflow.com/questions/788808/how-do-digital-
certificates-work-when-used-for-securing-websites-using-ssl
• http://security.stackexchange.com/questions/45963/diffie-hellman-
key-exchange-in-plain-english

