
Securing Online Games

 Published by the ieee ComPuter soCiety ■ 1540-7993/09/$25.00 © 2009 ieee ■ ieee seCurity & PrivaCy 13

Stephen Bono,
Dan
CaSelDen,
GaBriel
lanDau,
anD
Charlie
Miller

Independent
Security
Evaluators

J ames is 15 years old and loves playing computer
games online with his friends. While playing
his favorite game one day, he gets a message
from a player he doesn’t know, telling him to

check out a cool, new in-game item. Curious, he clicks
a link in the message—nothing. He clicks the sec-
ond link in the message—still nothing. Disappointed,
James returns to his usual gaming, but unbeknownst
to him, an identity thief now controls his computer,
which silently grants the thief access to the family’s tax
returns, emails, and other personal information. James
is just one of the millions of vulnerable subscribers to
this online game.

Massively multiplayer online role-playing games
(MMORPGs) are joining the ranks of software popu-
lar enough to be bombarded by attacks. For the past
decade, we’ve witnessed exploit after exploit target-
ing our favorite Web browsers, email clients, office
productivity software, and operating systems.1 Many
of the characteristics that make attacks against these
applications possible and profitable have worked their
way into online games, too. The large attack surfaces
in these games, for example, create ample opportunity
for attackers to pinpoint security vulnerabilities, and
as the user base increases, so does attacker incentive.
Thus, it’s important for game developers to recognize
this trend and incorporate a strong security focus into
their software development life cycles.

So far, most research surrounding online games has
been specific to cheating2 and theft of virtual goods via
external malware and overly permissive game scripts.3
Attackers haven’t capitalized on the large MMORPG
attack surface as a means for compromising gamers’

computers—yet. To our knowl-
edge, this article describes the only
two successful attacks of this nature. These two case
studies demonstrate the wide array of attack possibili-
ties that MMORPGs make possible.

Beyond Cheating
Online games and virtual worlds have experienced
various nefarious activities at the hands of cheaters,
including item duplication, sight through walls, in-
vincibility, and automatic aiming. These cheats are
sometimes called exploits, confusing them somewhat
with attacks that fully compromise host machines. In
fact, at worst, cheats alter the gaming experience for
those playing, but they’re limited to the virtual worlds
they affect.

This isn’t to say that we should take cheats lightly
just because they have limited effects on host machines.
After all, some aspects of the game environment are
tied to the real world—for example, players can buy
and sell in-game currency and items using real-world
money.2 Duplication in this context becomes a prof-
itable business for criminals and hurts players who
have made honest financial investments in these game
worlds. Gamer dissatisfaction leads to lower sales and
canceled subscriptions, motivating game companies to
continually stop cheaters and retain their subscribers.
But beyond cheats lurks a more serious threat to both
gamers and game companies alike—the risk of secu-
rity vulnerabilities that could compromise players’
home computers. A vulnerability in an MMORPG
or other online game that grants an attacker control of
another player’s computer costs the victim more than

As online games become increasingly complex and

popular, malware authors could start targeting these

virtual worlds to launch attacks. Two case studies show

how an attacker can leverage various features of online

games to take over players’ computers.

reducing the attack surface
in massively multiplayer
online role-Playing Games

Securing Online Games

14 ieee seCurity & PrivaCy ■ may/June 2009

just an unsatisfactory gaming experience: it can result
in stolen personal, financial, or corporate informa-
tion or a corrupted, useless computer. For videogame
companies, the consequences can be equally harrow-

ing. It’s one thing to patch a cheat every month or
so—once the nuisances disappear, the gaming gen-
erally continues—but a 0-day exploit compromising
hundreds or thousands of subscriber computers isn’t
soon forgotten.

Complexity
MMORPGs aren’t like typical computer games:
thousands of people play them by simultaneously in-
teracting online in a virtual environment. But more
than the complexity of servicing all these players at
once in real time is the enormous set of features coded
into the games.

MMORPGs, like most Internet software, adopt
client-server models as their bases. Game clients (the
players) connect to online servers (the virtual worlds).
The servers constantly update the client software with
the sights, sounds, and happenings in proximity to the
player’s avatar. When an avatar in the game performs
an action, such as casting a spell, shouting in a crowd-
ed room, or making a slight movement, the action
is sent to the server, processed, and forwarded to all
relevant game clients so that other players privy to the
act can witness it in near real time.

This model might not seem overly complicated,
but in striving for a limitless interactive experience,
these games are packed with features, letting players
perform thousands of actions. When compounded by
the numerous side effects each action can have within
the online world, the game logic’s complexity soars. In
fact, MMORPGs can become so complex that even
developers can lose control of them, as was seen in the
online game World of Warcraft when, due to an un-
foreseen combination of game features, a developer-
created disease ran rampant through cities, afflicting
and killing thousands of player avatars.4

 To stay ahead of the curve (and the competition),
game developers must constantly update and add fea-
tures to their software. Consider Web browsers—
feature after feature has driven the straightforward
concept of text-only Web browsing to the massive,
dynamic Web 2.0 multimedia experience we see
today. In the same way, competition and consumer

demand for rich functionality pushed online role-
playing games from text-based multiuser dungeons
in the early to mid-1990s to the massively complex
adventures they’ve become.

For Web browsers, the feature-laden fight for mar-
ket dominance comes with a cost: a decade or more
of frequent security vulnerabilities. Internet users are
generally aware of what not to do when it comes to
handling email attachments, dealing with spam, dis-
closing personal information, and clicking on popup
windows, but online gamers haven’t yet had to learn
analogous safety behavior for virtual worlds. In many
cases, games provide so much opportunity for possible
attacks that it might not matter.

Large Attack Surfaces
Like Web browsers, the attack surface in MMORPGs
is extensive. On top of the numerous client-to- server-
to-client communications occurring, MMORPGs
have begun to incorporate third-party plug-ins, pro-
cessing capabilities for various movie, sound, and im-
age formats, a reliance on external applications, and
the ability for direct P2P communication. Although
this wealth of features enhances the gaming experi-
ence, it also provides attackers with ample opportu-
nity to exploit the game client.

Client to Server to Client
Most client-to-client interaction during online game-
play is provided through a server middle man. A mes-
sage sent from one user to another is handled in the
sender’s client software, the server software, and final-
ly delivered to and processed by the recipient’s client
software. Despite the ability to include several secu-
rity checks along the way, attackers can sometimes
send malicious content through—essentially, deliver-
ing an attack to another player’s game client through
the server.

Following the tradition of denying bad traf-
fic closest to its source, the most efficient place to
prevent an attack of this kind is within the sending
game client. However, a determined attacker can
modify or emulate the game client to circumvent
such restrictions.2 In some cases, an attacker might
also be able to spoof messages from a game server to
the player, bypassing server-side validation entirely.
Effective input validation must deny bad traffic at
both the sending and receiving ends of game clients
and servers.

In general, each additional way by which two cli-
ents can communicate with each other increases the
probability of vulnerabilities. Because these features
are essential for online games, the best mitigation is
a strong security-conscious quality assurance compo-
nent in the development process’s testing phase to de-
tect and repair possible vulnerabilities.

It’s one thing to patch a cheat every month

or so—but a 0-day exploit compromising

hundreds or thousands of subscriber

computers isn’t soon forgotten.

Securing Online Games

 www.computer.org/security/ ■ ieee seCurity & PrivaCy 15

Third-Party Plug-ins
Some features aren’t coded by game developers—the
inclusion of user-created add-ons lets players create
features of their own, such as the SpamMeNot add-
on for World of Warcraft, which blocks in-game so-
licitations from known spammers (wow.curse.com/
downloads/wow-addons/details/spam-me-not.aspx).
MMORPGS also use third-party plug-ins such as Vi-
vox, which allows streaming voice capability between
game clients. Plug-ins and add-ons expand the num-
ber of potential attack vectors, from installing services
and opening listening ports on client machines to
downloading and processing content from the Web
and other users.

There’s no question that many of these additions
are useful, often necessary, but as has been demon-
strated repeatedly, these extra features can come with
security holes that open new windows for attackers.
Consider the enormous amount of content on the Web
that requires the Adobe Flash Player. A review of this
Web browser plug-in’s revision history reveals several
security vulnerabilities fixed with each update (www.
kb.cert.org/vuls/byid?searchview&query=f lash).
World of Warcraft alone has more than 5,000
available add-ons for download (wow.curse.com/
downloads/wow-addons/default.aspx). With more than
10 million subscribers, the game’s popularity speaks for
itself (http://eu.blizzard.com/en/press/080122.html).
As individual add-ons become widely used, they’ll
likely become the focus of malware authors intent on
taking over subscriber computers.

Mitigations for these sorts of attacks can stem from
the same techniques adopted in Web browsers—
running plug-ins and add-ons in a sandboxed envi-
ronment in which privileged system commands are
restricted. In some cases, a standard scripting language
for creating add-ons might be preferable, such as
World of Warcraft’s use of Lua. Additionally, player-
built add-ons can undergo a security vetting process
before being “approved.”

Numerous File Formats
The increasing number of supported file formats
transmitted and processed during gameplay is further
broadening game attack surfaces. The MMORPG
Second Life supports dozens of multimedia formats
that support various images, sounds, movies, and other
multimedia as well as scripts and markup languages to
enhance the gaming experience. However, more sup-
ported file formats yield more opportunity for attack-
ers to locate vulnerabilities. Research has shown time
and again that parsing small and seemingly innocuous
(yet malicious) multimedia files can have drastic con-
sequences (www.securityfocus.com/bid).

Often, the standard media-processing libraries
included with the distributed game software parse

and render these files. Although many such libraries
are standard—and using time-hardened standard li-
braries is almost always safer than writing new code
from scratch—they, too, are known to be vulnerable.
Moreover, it’s common for software utilizing these
libraries to remain unpatched long after a vulnerabil-
ity is publicly documented and corrected. Attackers
simply find software that uses outdated and vulner-
able libraries and exploit them.5,6 Game developers
must therefore ensure that homegrown multimedia
processing engines are rigorously tested for vulner-
abilities and that any standard libraries their games use
are patched along with the game itself.

Additional Delivery Mechanisms
To be as interactive as possible, some MMORPGs
take advantage of external applications, providing
in-game actions that trigger out-of-game software
execution, such as opening Web browsers and load-
ing music players. Although this allows easy access to
external information and makes the gaming experi-
ence more complete, it also opens numerous delivery
mechanisms for attacks.

For more than a decade, email clients have proven
an effective delivery mechanism for malicious files by
convincing naive users to open them, execute their
payload, and compromise the host machine. This ex-
ploit has also spread to instant messaging software, file-
sharing communities, Web sites, and other mediums
in which users can be duped into downloading and
opening malicious files. It’s only a matter of time be-
fore MMORPGs are similarly targeted: most gamers
haven’t yet instituted the same caution associated with
safe Web browsing and email reading during game-
play. It might be too much to ask for game developers
to exclude features that automatically launch external
software, but they should caution users when doing so,
take care not to allow external applications to launch
without player approval, and make it as difficult as pos-
sible for an attacker to dupe players into accepting.

P2P Communication
With the enormous amount of data transmitted be-
tween players in online games, it’s no wonder that
many of them allow direct P2P communication,

often without user consent. In the P2P model, data
flows directly from one player’s computer to another,
bypassing game servers altogether. In fact, game cli-
ents often seek P2P connections to reduce the load on

Game developers must ensure that

homegrown multimedia processing engines

are rigorously tested for vulnerabilities.

Securing Online Games

16 ieee seCurity & PrivaCy ■ may/June 2009

central game servers and latency in data transfers. Vi-
vox, for example, supports P2P connections for voice
chat between two players—by removing the middle
man, these online conversations become more fluid.

Direct P2P communication lets attackers deliver
exploit payloads unfiltered and unseen by the server.
When P2P communication is automatic and user
consent isn’t required, as is often the case, simply
coming within an attacker’s proximity in a virtual
world could compromise another player’s machine.
Because P2P communication bypasses game serv-
ers, these attacks can’t be blocked, and developers are
forced to create emergency patches for the game cli-
ent software.

To mitigate the additional threats P2P commu-
nication poses, game software should require player
consent before creating a connection between peers
or let players white-list specific peers for automatic
connection. Furthermore, all information transmitted
between players should be treated as suspect and sub-
jected to stringent validation.

Case Study: Second Life
Released by Linden Labs in 2003, Second Life is an
MMORPG that lets users interact, buy and sell land
and goods with Linden dollars (which can be convert-
ed in-game to and from US dollars), and even create
in-game content such as clothes, houses, and cars. Un-
like games such as World of Warcraft, Second Life has
no official objective—rather, it’s a place to explore,
make friends, and do things not possible in a player’s
“first life.”

Feature: User-Created Content
To make Second Life as realistic as possible, creative
freedom is available to players for designing their own
clothing, homes, and vehicles. They can also embed
multimedia creations of their own within game ob-
jects—for instance, a player can create a unique ambi-
ent-noise track that other players will hear while in a
particular room or display a movie screen on the side
of a wall that plays a favorite movie around the clock.
Few limitations are placed on the creations possible
within the virtual world.

Of particular interest to this case study is players’
ability to create multimedia files and associate them
with objects in the virtual world. When a player’s ava-
tar encounters an object in the game with an embed-
ded media file, the Second Life viewer displays this
content by rendering it with the optional QuickTime
library installed on that player’s computer.

These multimedia files aren’t hosted on game serv-
ers but rather on public- or player-controlled servers.
This relieves Second Life servers from handling this
content’s storage and delivery overhead and lets play-
ers update content easily and constantly. Instead of

a player’s game client retrieving all of the sight and
sound information from the virtual world, the client
is guided to pull the multimedia content directly from
player-controlled servers.

Buffer Overflow: Full Compromise
When a vulnerability exists in the QuickTime library,
it’s possible to compromise the host machine of any
player whose avatar approaches an in-game object
embedded with malicious multimedia content. This
happens as follows: first, an attacker creates a virtual
object somewhere on his or her property in the on-
line world and then associates a URL with the vir-
tual object, indicating that a multimedia file is to be
presented when this object is encountered. The URL
itself points to a malicious media file with an embed-
ded attack payload located on an attacker-controlled
server. When a vulnerable player’s avatar encounters
this object in the virtual world, the malicious pay-
load is automatically downloaded, processed by the
underlying QuickTime library, and the host machine
is completely compromised.

This attack requires a vulnerable QuickTime li-
brary to reside on the victim’s machine; the library
isn’t installed with the Second Life software, but it’s
recommended and necessary to experience many of
the virtual world’s enhanced aspects.

Charlie Miller and Dino Dai Zovi developed an
exploit with some specific properties: by the nature of
the QuickTime vulnerability, the payload download-
ed additional malicious code and injected it into the
game client’s running process.7 This code checked the
amount of Linden dollars available to the victim and
immediately transferred 12 of them to the attacker’s
account. The player’s avatar was then forced to shout,
“I’ve been hacked!” Finally, the attack stopped, and
control of the game returned to its normal running
state as if nothing had happened. At the time Miller
and Dai Zovi demonstrated this attack, QuickTime
was known to be vulnerable and had remained un-
patched for several weeks (www.securityfocus.com/
bid/26560).

This attack demonstrates how an attacker can abuse
the extensive feature list and freedoms granted to play-
ers and compromise their machines. By allowing play-
ers to create custom content of various formats, Second
Life and other MMORPGs establish new attack vec-
tors for malicious players to inject exploit payloads
that either target game software itself or third-party
libraries used for data processing. Moreover, provid-
ing players with the ability to host their own content
grants attackers the same privilege, letting them bypass
Second Life servers, communicate directly with their
victims, and deliver unfiltered malicious content. Fur-
thermore, attackers have the freedom to serve mali-
cious content based on timing, the source IP address,

Securing Online Games

 www.computer.org/security/ ■ ieee seCurity & PrivaCy 17

or any other criteria of their choice.
After Miller and Dai Zovi demonstrated this at-

tack, Linden Labs took steps to mitigate future attacks
of this kind by requiring the latest version of Quick-
Time to ensure older, unpatched versions couldn’t be
exploited. Additionally, players can now disable multi-
media content (although it’s unlikely they’ll do so).

Case Study:
Anarchy Online and Age of Conan
Anarchy Online and Age of Conan are MMORPGs
created by Funcom. Age of Conan is set in a virtual
environment modeled after the fictional universe of
Robert E. Howard’s Conan the Barbarian, and Anar-
chy Online, Age of Conan’s predecessor, is set in a fu-
turistic science fiction environment. In both games,
players explore the online world and advance char-
acters through a series of challenges and encounters.
During their advancement, players interact collabora-
tively or competitively.

Gameplay is similar in both games. In-game com-
munication and messaging are essentially the same,
and syntax is identical, as are the methods for execut-
ing scripted commands. In fact, based on the similari-
ties between the games and the existence of identical
vulnerabilities, it wouldn’t be surprising if Funcom
reused the bulk of the code in both games.

Due to the games’ similarities, their clients are sus-
ceptible to the same attacks, although the results vary
slightly by vulnerability. In both games, attackers can
read files from anywhere on the victim’s machine and
crash others’ game clients. However, Anarchy Online
is readily exploitable through its stack-overflow vul-
nerability, but Age of Conan is not.

Feature: In-Game Communication
In the game world, players communicate through
various means, the most common of which is a text-
based messaging system similar to that of chat rooms
and instant messaging programs. For example, players
can communicate privately by issuing the command

/tell [player_name] [message]

through the game’s command-line interface or send
a message to all nearby individuals by issuing the
command

/say [message]

The recipient sees the sender’s name and message dis-
played in the game’s chat window; colors differentiate
messages between channels, as well as whether they’re
public or private.

It’s also possible to format messages with basic HTML
to send hyperlinks, formatted text, and images; such hy-

perlinks can contain in-game scripting commands. For
instance, a player could send a message containing the
following HTML and in-game scripting language:

/tell Alice <a href=”text://

http://securityevaluators.com”>

 Look at this website.

which appears to Alice in a separate message window
as a hyperlink to a Web site. However, if the player
clicks on the underlined text, http://securityevalu-
ators.com, he or she unwittingly executes a script
called fun_script.

Feature: Automated Scripts
Players can write custom script files to automate tasks
that consist of a sequence of commands or to quick-
ly “speak” long messages without typing them out
fully—for example, a single script might contain the
commands for greeting another player, such as saying
hello, waving, and bowing.

Scripts are located in the game directory under a
folder called “scripts.” Each script is nothing more than
a text file consisting of several commands, with each
command represented by a single line. Those lines that
don’t begin with a “/” character aren’t interpreted as
commands, so the game client “speaks” them into the
game world as text. A player can execute a script like
a normal command by typing a slash followed by the
script’s name in the game’s command line:

/[script_name]

Through a bug in both games’ code, users can
specify scripts located anywhere on the local machine,
as opposed to strictly those within the “scripts” folder.
This type of bug is commonly called a directory tra-
versal vulnerability because it allows a command path to
traverse the file system, leaving the original directory
and accessing a file elsewhere in the system. This is
accomplished by prepending any number of “up one
directory” instructions (‘..’) when specifying the
desired file’s relative path to the “scripts” folder. For
example, an attacker could issue the command

/../../../../Users/<user>/Desktop/
 fun_script

to execute a script called “fun_script” found on
the user’s desktop.

Directory Traversal Attack Example
By combining the directory traversal bug with the
ability to mask local scripts as Web site URLs, not

Securing Online Games

18 ieee seCurity & PrivaCy ■ may/June 2009

only does an attacker have a potentially interesting
cheat that can fool another player into performing in-
game actions, but worse, the attacker can read confi-
dential information directly off the player’s computer.

Consider fooling a player into activating the follow-
ing script:

/../../../../Users/<user>/AppData/
Roaming/Intuit/Quicken/CONNLOG.TXT

This script causes the victim player to “speak” inside
the game world lines of text from the specified Quick-
en log file or other files containing information about
the user’s bank accounts, the location of Quicken files
and backups, and even exported report information
with hard financial data.

The severity of a directory traversal vulnerability
is apparent in the information leaked and how it can
be used. Attackers can leverage these bugs to obtain
specific information for subsequent attacks that take
full control of the target computer, such as local IP
addresses, passwords, or process information.

Buffer Overflow: Crash Example
A second vulnerability in both games is found in their
script-parsing engines. If a script is loaded with a sin-
gle line that’s longer than 1,024 bytes, a stack buffer
overflows, the executable in memory becomes cor-
rupted, and the game client crashes. An attacker can
easily exploit this vulnerability by issuing a message
that executes the script

/../AgeOfConan.exe

Here, the script-parsing engine attempts to parse the
18-Mbyte file, and the game client promptly crashes.
This alone presents an interesting cheat whereby play-
ers can fool each other into crashing their own game
clients and temporarily exiting the virtual world. Ad-
ditionally, because this is a stack-buffer overflow, it
provides an opportunity for possibly overwriting the
game client’s stack with executable code and taking
full control of the victim’s computer. This is difficult
in Age of Conan because it’s compiled with stack-
 protection measures to prevent these specific attacks,
but the same can’t be said about Anarchy Online.

Feature: Launch External Browser
As discussed previously, messages communicated be-

tween players in the game world can contain HTML
formatted links to external URLs. Until now, we’ve
only talked about masking local scripts as links to Web
sites. If used legitimately, clicking a link within the
game launches an external Web browser and directs it
to the specified URL accordingly. For instance, Alice
might want Bob to visit her avatar’s guild Web site, so
she passes along the link:

/tell Bob Hey, go to my guild website.
/tell Bob <a href=”text://
 <a href=’chatcmd:///start
http://AliceRulez.com’>http://
 AliceRulez.com”>My guild
 website.

However, this feature is the first step in an attack. In
addition to displaying Alice’s guild Web site, simply
visiting the site silently puts a cookie on Bob’s com-
puter. This cookie contains the exploit payload.

Buffer Overflow: Full Compromise
Once the payload is downloaded onto the victim’s
computer, the attacker dupes the victim into clicking a
second link, at which time the script is then loaded by
the script-parsing engine, overflows the stack buffer,
overwrites the executable in memory, and executes
the exploit code. Alice needs only to convince Bob to
click on the second link:

/tell Bob Oops, wrong one.
/tell Bob <a href=”text://
 <a href=’chatcmd:
 ///../../../../DOCUME~1/Bob/Cookies/
 bob@AliceRulez[2].txt’>
http://AliceRulezBetter.com”>
 My guild website.

This second link again appears exactly like a link to a
typical Web site, http://AliceRulezBetter.com. Once
clicked, however, the payload is loaded and executed
with the same permissions as the game software, and
the victim’s computer has been compromised.

The specific exploit developed and tested in our
lab had the following properties: because it used a
valid cookie, and the Anarchy Online script-parsing
engine behaved differently depending on bytes with-
in the script, the attack payload was restricted from
containing most byte values, thus limiting the proces-
sor instructions available. To combat this, the attack
payload consisted of a very small decoder built using
only the available instructions and a more complex
portion, encoded such that valid characters replaced
invalid instructions. The decoder would first execute
and decode the full payload onto the stack, which was
subsequently executed. Malware authors typically use

All information transmitted between players

should be treated as suspect and subjected to

stringent validation.

Securing Online Games

 www.computer.org/security/ ■ ieee seCurity & PrivaCy 19

this technique when certain byte values are unus-
able.1,8 Once executing, the exploit downloads and
runs additional executables from the attacker’s Web
server, steals the victim’s Anarchy Online account in-
formation, uploads it to the attacker’s FTP server, and
forces the victim’s avatar in the game world to don a
bikini and start to dance.

The purpose of these specifi c actions in this proof-
of-concept exploit payload is to demonstrate the re-
alistic threat these attacks pose. Malware authors can
carefully craft them to install spyware and other mon-
itoring software, report back with confi dential infor-
mation, and even directly aff ect activities within the
virtual worlds that players enjoy.

After we demonstrated this attack, Funcom took
the steps necessary to patch both Anarchy Online and
Age of Conan so that attackers could no longer exploit
these vulnerabilities. To prevent deceptive hyperlink-
ing, developers can block or fl ag links that point to
somewhere other than their descriptive text—for ex-
ample, a link to http://www.example.com should have
exactly the text http://www.example.com; many email
spam fi lters use a similar heuristic to detect and fl ag
phishing attempts. Alternatively, games can prompt
users to confi rm the action that links are to perform.

C heating in MMORPGs has a signifi cant impact on
the gaming community, but the impact of attacks

that fully compromise players’ computers is much great-
er. Online game developers should identify such prob-
lem areas with security-conscious risk assessments and
allocate their resources accordingly. In future work, we
hope to explore risk in these unique situations and ulti-
mately help online game developers manage security for
their games throughout their products’ life cycles.

References
G. Hoglund and G. McGraw, 1. Exploiting Software: How
to Break Code, Addison-Wesley Professional, 2004.
G. Hoglund and G. McGraw, 2. Exploiting Online Games,
Addison-Wesley Professional, 2008.
I. Muttick, 3. Securing Virtual Worlds against Real Attacks,
McAfee, 2008.
J. Reimer, “Virtual Plague Spreading like Wildfi re in 4.
World of Warcraft,” Ars Technica, 21 Sept. 2005; http://
arstechnica.com/news.ars/post/20050921-5337.html.
R. McMillan, “Mac Hack Contest Bug Had Been 5.
Public for a Year,” PC World, 21 Apr. 2008; www.pc
world.com/businesscenter/article/144921/mac_hack
_contest_bug_had_been_public_for_a_year.html.
M. Daniel, J. Honoroff , and C. Miller, “Exploiting An-6.
droid,” Independent Security Evaluators, 25 Oct. 2008;
http://securityevaluators.com/android/.
C. Miller, “Virtual Worlds, Real Exploits,” 7. Network Se-
curity Newsletter, Apr. 2008.

“Writing ia32 Alphanumeric Shellcodes,” 8. Phrack, vol.
0x0b, no. 0x39, Phile #0x0f of 0x12.

Stephen Bono is a principal security analyst and partner at

Independent Security Evaluators. His research interests include

applied cryptography, secure software development, and RFID

security. Bono has an MS in computer science and security

informatics from the Johns Hopkins University. For his work

in exploiting vulnerabilities in RFID payment systems and car

immobilizers, he received the 2007 Award for Outstanding

Research in Privacy Enhancing Technologies. Contact him at

sbono@securityevaluators.com.

Dan Caselden is an associate security analyst at Independent

Security Evaluators. His interests include computer security,

game design, human-computer interaction, and technology

education. Caselden has an MS in security informatics from

the Johns Hopkins University. Contact him at dcaselden@

securityevaluators.com.

Gabriel Landau is a security analyst at Independent Security

Evaluators. His main areas of expertise are applied cryptog-

raphy and secure software development. Landau has a BS in

computer science from the Johns Hopkins University. He was

the 2007 recipient of the Michael J. Muuss undergraduate re-

search award. Contact him at gabe@securityevaluators.com.

Charlie Miller is a principal security analyst at Independent

Security Evaluators. He was � rst to demonstrate public ex-

ploits against Apple’s iPhone and Google’s G1 phone running

the Android operating system. Miller won the CanSecWest

Pwn2Own competition in 2008 and was hailed by Popular

Mechanics as one of the top 10 computer hackers of 2008.

He is a CISSP and has a PhD from the University of Notre

Dame. Contact him at cmiller@securityevaluators.com.

Learn about computing history
and the people who shaped it.

COMPUTING
THEN

http://computingnow.
computer.org/ct

