
Securing Online Games

20 Published by the ieee ComPuter soCiety ■ 1540-7993/09/$25.00 © 2009 ieee ■ ieee seCurity & PrivaCy

T he online gaming industry is booming. With
millions of gamers connecting from coun-
tries across the globe, a lucrative market has
emerged for both the companies developing

the games and those seeking to subvert them. Games
such as World of Warcraft boast subscription counts
topping 10 million active users (www.mmogchart.
com/Chart1.html), which represents a ripe target for
potential attackers.

These unprecedented online communities have
evolved into microcosms of the real world, developing
economies in which even the in-game currencies have
real-world value. Web sites have popped up allowing
gamers to buy everything from high-level characters
to information or programs that help them cheat and
obtain advantages over other players. This transla-
tion from virtual worth to actual wealth has created
opportunities for malicious users with the necessary
skills to turn a profit. Although many game develop-
ers acknowledge and address these risks, new games
are still emerging that use technologies whose security
implications have yet to be publicly disclosed. In this
article, we focus on Disney’s Pirates of the Caribbean
as a case study. We discuss the game’s architecture
and the risks associated with the choice of a dynamic
language, and demonstrate the possible impact when
someone exploits these weaknesses.

Complex Systems,
Dynamic Languages
Massively multiplayer online role-playing games
(MMORPGs) are often implemented as exceedingly
complex distributed systems that run on a wide range

of end-user op-
erating systems
and hardware. To alleviate some of the difficulties of
supporting such a heterogeneous network of users,
many game development houses have started pro-
gramming their products in platform-independent
languages. Traditionally, they developed their games
in static compiled languages such as C or C++ to ex-
ploit runtime speed advantages. However, supporting
multiple platforms can be a time-consuming task in
the development cycle.

Today, we see games increasingly written in dy-
namic cross-platform languages, such as Python
(www.python.org) and Ruby (www.ruby-lang.org).
A list of popular releases already implemented in such
languages includes Disney’s Pirates of the Caribbean
(http://apps.pirates.go.com/pirates/v3/welcome),
EVE Online (www.eve-online.com), and Civiliza-
tion 4 (www.2kgames.com/civ4/home.htm). How-
ever, the migration to dynamic languages carries
with it unforeseen risks to intellectual property and,
in many cases, makes it easier for malicious users to
subvert the game.

Pirates of the Caribbean Example
Disney’s game developers wrote Pirates of the Ca-
ribbean in Python, a dynamic, object-oriented pro-
gramming language. Dynamic languages are defined
as high-level languages that perform type checking
at runtime, but many of them also support reflection,
metaclasses, and runtime compilation. These features
are of particular interest because they require a signifi-
cant amount of type information to exist in the distrib-

Online games offer opportunities for malicious users

with the necessary skills to turn a profit. Many game

developers acknowledge and address these risks, but new

games still use technologies whose security implications

have yet to be publicly disclosed.

AAron
Portnoy
And Ali rizvi-
SAntiAgo

TippingPoint

Walking on Water
A Cheating Case Study

Securing Online Games

 www.computer.org/security/ ■ ieee seCurity & PrivaCy 21

uted application. This information can include variable
and function names, class hierarchies and relationships,
and even the source code’s original file names.

In Disney’s case, the code is largely distributed in
one file, Phase1.pyd, which contains serialized Py-
thon code that, in turn, contains all the logic behind
the client-side portion of the game. Developers of-
ten design games such that the client performs many
of the intensive calculations dealing with physics
and graphics. This design alleviates the need for a
server to transport and then process large amounts
of data over a network. However, offloading these
tasks to the client crosses a trust boundary. If a client
can modify local code that isn’t later verified by the
server, cheating becomes easy. Let’s examine how a
dynamic language’s features can help someone effi-
ciently discover the presence of such weaknesses.

Code Exploration
The process of exploring client-side code begins with
demarshalling the serialized Python objects. We’ve re-
leased a GUI-driven toolset called AntiFreeze (http://
code.google.com/p/antifreeze/) to make this process
more observable. Upon loading a binary Python file
such as Disney’s Phase1.pyd, the AntiFreeze interface
displays a high-level overview of the code and its
structure, as Figure 1 shows.

For example, the figure shows that the source code
defines a module called pirates.pirate.Dynamic
Human, which contains a class called Dynamic
Human. This class has methods applyBodyShaper,
applyHeadShaper, calcBodyScale, and so on.
Such information is available because developers
wrote the game in a dynamic language, and the in-
terpreter requires it—obtaining this information in
a comparable game written in C that didn’t include
symbols would take a considerable investment of time
and effort.

Code Modification
The middle pane in Figure 1 shows a function’s low-
level interpretation in byte code, which conveys the
original source code’s logic and is easily readable when
disassembled. Here’s an example:

load_const 179 # ‘maxSpeed’
load_const 178 # 0.69999999999999996
load_name 195 # ‘defaultMaxSpeed’
binary_multiply
rot_three
store_subscr

This code simply stores the value 0.7 into a variable
called defaultMaxSpeed. Even in this straight-
forward example, we can readily predict the poten-
tial for abuse. Once we find interesting code—such as

that which governs physics—changing it is trivial. In
the previous code example, we can increase the value
of 0.7, and thus a cheat is born. Reading through the
disassembly of Disney’s code in the Phase1.pyd file we
find several interesting names:

pirates.ship.ShipGlobals
pirates.battle.CannonGlobals
pirates.battle.WeaponGlobals
pirates.economy.AwardMaker
pirates.economy.EconomyGlobals
pirates.piratesbase.PiratesGlobals
pirates.pvp.SiegeManager
pirates.quest.QuestConstants
pirates.reputation.ReputationGlobals

Many of these modules contain constant values that
we can modify to affect weapon power, ship speed,
experience points required to level up, and many more
aspects of the game. The process for disassembling and
re-injecting Python code into PYD files hasn’t been
documented extensively, which perhaps instills a sense
of security in Disney’s developers.

Malicious Opportunities
Figure 2 illustrates the result of code modification; here,
a malicious gamer has significantly increased a charac-
ter’s jump height using the technique we just described.

Being able to alter an avatar’s physics exposes other
in-game side effects as well—for example, to save on
calculations, the building structures in the game only
detect collisions with their vertical walls, so if an avatar
can jump high enough, it can fall through structure
roofs, accessing otherwise inaccessible areas. Moreover,
if a ship is at sea, a modified character can walk on wa-

Figure 1. Code overview. A GUI-driven toolset such as AntiFreeze can help

someone extract not only the program’s logic but also type information,

symbolic names, and even the class hierarchies and relationships as defined

in a game’s original source code.

Securing Online Games

22 ieee seCurity & PrivaCy ■ may/JuNe 2009

ter after jumping overboard (which is impossible with-
out such a cheat). Figure 3 shows a modified character
walking on water after having jumped off a frigate.

These cheats are so easily accomplished because the
game is implemented in a dynamic language, and dy-
namic languages require type information to be pres-
ent in order to function. Programs written in these
languages run under an interpreter, so if the inter-
preter can access this type information, nothing stops
a malicious user from doing the same. Programs writ-
ten in compiled languages must be reverse engineered
from assembly language, which can be significantly
more difficult.

Another serious issue that arises with the choice
of a dynamic language is its susceptibility to botting,
which is the process of scripting a game such that it es-
sentially plays itself, autonomously performing actions
that increase the value of a player’s character. These
actions differ game to game but can include activities
such as harvesting gold or defeating enemies to gain
experience points. The ability to perform these ac-
tions without any human interaction allows a player
to simply let the gameplay itself indefinitely.

Dynamic languages also support a feature called
dynamic recompilation that allows for new code to be in-
jected into the interpreter and evaluated during run-
time. What this means for a game is that players can
enumerate interesting functions defined in the devel-
oper’s source code that control their avatars and call
those functions themselves. A malicious gamer could
write his or her own program to repeatedly access this
functionality and quickly create valuable assets to sell
to other players. The gamer could then expand this
process to work over multiple accounts, essentially
creating a profitable character farm.

A s more developers make the switch to dynamic
languages, the security implications we’ve de-

scribed here will eventually need to be addressed. The
availability of type information, dynamic recompila-
tion, and introspection are the foundations of these
languages, which developers should consider when
implementing a large-scale application. Until mitiga-
tions come to fruition, the games in current release
will continue to be susceptible.

Aaron Portnoy is a researcher in TippingPoint’s security re-

search group. His research interests include reverse engineer-

ing, vulnerability discovery, and tool development, and he’s

discovered critical vulnerabilities affecting a wide range of en-

terprise vendors, including Microsoft, Adobe, RSA, Citrix, Sy-

mantec, Hewlett-Packard, and IBM. Contact him at aportnoy@

tippingpoint.com.

Ali Rizvi-Santiago is a researcher in TippingPoint’s security

research group, where his responsibilities include developing

reverse-engineering-related tools and applying them to his

daily tasks. Contact him at arizvisa@tippingpoint.com.

(a)

(b)

Figure 2. Code modification results. (a) The avatar in Disney’s Pirates of the

Caribbean game is at the peak of a jump, clearly higher than surrounding

buildings (the unaltered in-game jump height is closer to a meter). (b) A

similar jump, but looking down on characters far below.

Figure 3. Cheating physics. After modifying Disney’s Pirates of the

Caribbean game code, malicious gamers can manipulate their avatars to

walk on water after jumping overboard.

