Comp 150 - Music Appsfor the iPad
Lab 1: Building a Sequencer in Pure Data

In thislab you will build a sequencer in Pure Data with a basic wavetabl e synthesizer as an audio source.
The goal of thelab isto get you familiar with Pure Data and the tools you'll be using for the first project.

For this lab you will want:

1) Aninstallation of Pd-extended - you can find one at www.puredata.info. Pd-vanillawill also

work, but you will be able to use externals from Pd-extended in your iOS project later on if you like.

There isa comprehensive list of objects for both versions at:

http://en.flossmanuals.net/pure-data/list-of-objects/introduction/

2) ThePd-for-LibPd Library. Thisisa collection of Pd-Vanilla-compatible patches that offer extended
functionality to save you time:

http://www.github.com/cpenny42/Pd-for-LibPd

To get the git repository on your computer, copy the clone URL from Github page, open your

terminal, and navigate to the folder where you'd like to download it. Type the following command to

make alocal copy onto your computer:
$ git clone https://github.com/cpenny42/Pd-for-LibPd.git

Next, launch your installation of Pure-Data and link it to the /source folder by adding it to Pd's

search path. You can do thisin Pd->Preferences. You should now have access to all the patches from

the Github repository. The patch pd_for_libpd.pd shows you most of the objectsin the library.

Plan of the lab

Wewill start by making avery smple sequencer that can play 4 notes. Wewill then expand it to be able
to sequence any number of notes as well as synchronize atremolo effect to the sequencer's internal
metronome.

Basic Elements

In addition to the link above, you can find all of the core objects by right-clicking and selecting “help”.
The Pd FLOSS manuals are also agreat resource; en.flossmanuals.net/pure-data/

The abject [keyboard shortcuts] has a convenient list of all the available keyboard shortcuts in one
place.

Keep in mind that Pd only lets you undo & redo once, so you need to be careful about accidentally
deleting sections of apatch. Save often & make backups so you don't lose any of your work.

Part 1 —A basic sequencer
Create anew patch and save it as labl-A.pd.

In the app menu, click Media Audio Settings. Make sure the output deviceis corfigured to play from
your speakers.

https://github.com/cpenny42/PD-for-LIBPD
http://en.flossmanuals.net/pure-data/list-of-objects/introduction/
http://www.puredata.info/
http://en.flossmanuals.net/pure-data/

1. Createaswitch

Put a[toggle] in the patch. (Windows: ctrl-shift-T, Mac: command-shift-T). We're using atoggle in this
example, but there are many ways to turn your sequencer on & off.

2. Regulatethetiming

a)

b)

Put a[metro] object with a creation argument in the patch - it will send a bang periodically to
regulate timing. All timing in Pure-Dataisin terms of milliseconds, so an argument of 500 would
put the metronome at 120 BPM (500 == 2 beats/ second == 2 * 60 beats/ minute).

Connect the outlet of the [toggle] to the left inlet of the [metr o]

Add anumber box (ctrl/command-3) and connect it to the right inlet of the [metro]. You can now
change the metronome's tempo. Your patch should look like this:

Sl

Eetrn ER

3. Set up acounter

a)

b)

c)
d)

f)

Put in affloat] (or [f]). This stores the number in the right inlet and outputs the result when it
receives a bang.

Connect the outlet of the [metro] to theinlet of the float.
Add a[+ 1] object.

Connect the outlet of the float to the left inlet of the [+ 1] and the outlet of the [+ 1] to theright inlet
of thefloat. Thiswill store the incremented number in the [float] object. If you connect the [+ 1] to
the left inlet of the [float], you will get afeedback loop (a.k.a. stack overflow).

Put in a number box and connect it to the float. You can how see your counter work when you click
the toggle switch.

Add a[mod 4] object and connect it to the number box above.

]

metro BAA

L =
f + 1
E}C

mod 4=

W]

g) Putahorizontal radiointhe patch (Put Hradio, or command/ctrl-shift-1). Right-click it to seeits

preferences, set the number to 4, and connect it to the output of the [mod 4]. You will now cycle
through aloop of 4 beats.

4. Set up adistribution channel

a) Putina[select 01 2 3] object and connect it to the Hradio's outlet. A bang will be sent out one of
the left four [select] outletswhen O, 1, 2, or 3 are sent to the left inlet. Other input will be routed
through the right outlet.

b) Add four [float] objects— one for each note in the sequencer. Connect the left inlets of each [float]
to the left outlets of [select 01 2 3.

c) Putavertical dlider (Put Vdlider, or command/ctrl-shift-V) in the patch for each step in the
sequencer, and connect each to the right inlet of a [float] object. The default range for didersis O-
127, so thiswill alow you to set any note from 0 to 127 in each step. You can change this range or
the dlider's appearance by right-clicking and selecting “ Properties’.

d) Add a[mtof] object at the bottom of the patch, and connect the outlets of each [float] to itsinlet.
Thiswill convert the MIDI note from 0-127 into afrequency in Hz.

E
netro 588 11T]

Lnltnf

5. Send audio to your speakers

a) Put an Array in the patch of size 4099, and name it “wavetable” (Put — Array). This will be the
waveform you play to the speakers. We will be reading from the Array with the [tabosc~] object,
which requires the array size be a power of 2 + 3 (aka 4096 + 3).

b) Draw a waveform into the array. Exit edit mode and use your cursor to draw any shape in the table.

c) Add a [tabosc4~ wavetable] object (where “wavetable” is the creation argument), and connect the
outlet of the [mtof] to its inlet. [mtof] will now tell the [tabosc~] the frequency at which to read
from the wavetable.

d) Adda [*~0.3] and connect it to the output of the [tabosc~]. This will make sure the audio is not too
loud. You can add a number box and connect it to the right inlet for interactive volume controls.
Note that the “~” in the object name implies that it works on signals instead of floats.

e) Add a [dac~] object, and connect the outlet of the [*~ 0.3] to both inlets of the [dac~].

If you turn DSP on (command/control-/), you should be able to hear your waveform. The positions
of each slider will determine the notes that are played, and the number connected to the right inlet of
the [metro] will let you change the sequencer's speed. If your table is empty, you won't hear
anything.

f) Add a message object (Put — Message, or command/control-2). Type the following in it:

wavetable sinesum 4096 0.6 0.3 0.2 0.15 0.12;
wavetable normalize;

This will put a waveform consisting of a sine wave and four of its harmonics with the amplitudes
given in the above command, and then it will normalize the waveform from -1 to 1. Play around
with the coefficients to change the sound, or check out the ./sinesum executable in the Pd-For-LibPd

folder for more sounds.

E:
I wavetable

metro BAA o
I = |I
f + 1 e
1 kS
| — | LY
mod 4 | '\H_‘x I
1
E;I:]::[:] . \
x\‘“-.-"'_ I'I
sel @123 K
f f |f
mtof ; .
T - wavetable zinesum 4895 A.6 8.3 8.2 8.15 A.12;
tabozcd~ wavetable guvetuhle hormalize;
B
=
¥ B3
dac-~

/* A note about signals: When you are working with audio, you are actually manipulating a stream of
numbers that flow very quickly (usually 44100 “samples” per second). Pure-Data abstracts this away

from you by providing a Signal type. Objects that work on signals receive individual buffers of samples
that are passed between objects, and math operations such as [*~] and [+~] will perform the operation
across the entire buffer. You can set the Buffer Size in Pd's audio settings — Larger buffers will cause
latency, and smaller buffers can put more strain on your computer as it has less time to process the audio.
*/

Part 2 —Adding functionality

We are now going to make a more advanced sequencer that is dynamically configurable — while the
sequencer above is nice, it is very limited.

Save & Close your patch (labl-A.pd), and make a new patch called labl-B.pd.

When you use Pd in your i0OS projects, you will need to communicate with your patches via an interface
you define. The first step for Part 2 is defining the interface for the sequencer we will build.

1. Define the interface

a) We will be making a sequencer that can hold any arbitrary sequence of notes. The user will be able

to change the speed of the sequencer along with the number of notes in a loop. Create the objects
[send $0-beat duration] and [send $0-sequence length], and create number boxes that are
connected to each [send]. The beat duration will be in milliseconds, and the

sequence length will be the number of notes in the sequence.

B B
T =
=z =

tA-beat_duration $A-zequence_ length

/* Note about $0: You can access a patch's creation arguments through the dollarsign notation - $1
isthe first argument, $2 the second, etc. $0 is a special argument given to each patch that is
guaranteed to be unique to each separate abstraction. You can use this to implement [send] and
[receive] objects that are guaranteed not to accidentally communicate other instances of the same
abstraction —in this case the patch “ lab1-B.pd” - that have already been loaded. */

2. Add aWavetable & Sequencetable

a) Wewill implement the sequencer by using an Array to read, store, and iterate through note values.

First, create a“wavetable” Array of length 4099 (same as before), and then create a* sequencer”
Array of length 124. Draw whatever wave shape you want in the wavetable Array.

Thelength of the sequencer Array will be the maximum possible number of notes in the sequence

—inthis example we will cap it at 124, though you could make your Array bigger or smaller if you
like.

SeqUENCET wavetable

B
=
z

w H=0

$A-beat_duration $A-zequence_Llength

3. Read from the Sequence table

a)

b)

Now we will implement the sequencer. Add [r $0-beat_duration] & [r $0-sequence_length] to
receive the input parameters.

Wewill use a[phasor~] and a[tabread~] object to read from the table.

[phasor ~] outputs a steady audio ramp from 0 to 1 at the input frequency (in Hz), so by multiplying
the output by the highest index we want to read, we can use these two objects to loop through
indeces of the sequencer table. Frequency in Hz =1/ s, where sisthetime in seconds for one full
loop. Therefore, the formulawe'll use to convert the input beat duration and
sequence lengthis

Frequency of [phasor~] = 1 / ((beat duration / 1000) * sequence length)

Thiswill cause the [phasor ~] to iterate through the indices of the sequencer table chosen by the
user. Inyour patch, add the necessary objectsto make it ook like the patch on the next page:

B
s
=

d)
€)

f)

$8-beat_duration

FeqUEnCEr wavetable

1 Your Waveform
$A-sequence_ Llength Goes Here

o H=1

¥ $8-begt_duration
/ 1688

é $A-zequence_length

tbf

*

=
1ny

Ehus rf
Hoee]
Euhreudfv Sequencer

The signal coming out of [tabread~] will now be the values stored in the sequencer table between
index 0 and the index set by sequence length.

Arraysin Pd store values from -1 to 1 within their borders (though any value can be stored — it just
might fall outside the draw box for the Array in Pd). In aniOS app, it doesn't matter how the array
would appear when opened in Pure-Data, but for this lab, we want to scale the output of the array to
go from 0 — 127 for easier interaction.

Since the default rangeis-1 to 1 and we want arange from 0 to 127, we will need to transform the
output with the formula below:

value out = ((value in + 1) / 2) * 127

Implement this formulato transform the output of the [tabread~] object. The answer is below if you
get stuck.

You can use the [view~] abject connected to a number box to see the current value of an audio
signal.

Next, add a [mtof~] object to convert the sequencer output from MIDI note numbersto
frequenciesin Hz.

Add a[tabosc4~ wavetable] object to read from your wavetable Array a the frequencies stored in
the sequencer Array.

Connect the [tabosc4~] to a[dac~] object to hear the result.

You won't hear anything if you haven't first set the beat duration or the sequence length oOrif
your wavetable Array isempty. Draw inyour sequencer Array to change the sequence. For
easier volume control, check out the [volume~] object, or implement your own with [*~]

Your patch should look similar to the patch on the next page:

= = Fequencer wavetable
3G9 21

= $8-begt_duration = $B-zequence_length

é%—beut_durutinn 3 ."\.-'ﬁ- .
/ 1695 e -~ -

é $A-zequence_ Length "r“x_.-ﬂ-

tbf A Wour Sequence Goes Here A4 Your Woveform Goss Here

*

=

ir

i =

Ehus T~

R !

e :iewf
tabreod- zequencer

h\f 967 Index
1 =

e 2 vigw~

) —

e 175 —B.3m Unzcaled_Malue
Weor~ view~

s
= 295caled_MIDI _Malue
taboscd- wavetable .29

|: | Mo Llume |

o L ume~

dac~

Part 3—Two Simple Effects

1. Youwill now add two basic effects for your sequencer, one of which has already been implemented for
you.

Add a[guffilter~] object and put it somewhere between the [tabosc~ wavetable]. Thisisasimple
Biquad filter that will convert filter parametersto coefficients that [biquad~] will accept. Wewill cover
filters more in afuture lecture.

Wtof~ vige

Z
= A95caled_MIDI _Walue
taboscd~ wavetable 29.19

A-biquad_response

[certd_Freauency | 7127.27
Lo

[| -19.272
U lowpass Ejpeuk
Uhighpuss Ej lowshe LT

Clbandpass [Clhighshelt

Clnatch [psr_on

|: Vo ll.lme |
o Lulie~

doc~

2. Implement atremolo effect that allows the user to set the rate to be proportional to the sequencer's
beat duration. Thiswill involveusing a[*~] object to multiply the amplitude of the sequencer's
output signal with another signal, possible from an [osc~]. You would then need to set the frequency of
the [osc~] to cause the tremol o to beat in synch with the sequencer. If you get stuck, the FLOSS
manuals have a chapter on Amplitude Modulation: en.flossmanuals.net/pure-

data/ch021 amplitude-modulation/

