
5

CHAPTER 2

Starting with
Pure Data

SECTION 2.1

Pure Data

Pure Data is a visual signal programming language which makes it easy to
construct programs to operate on signals. We are going to use it extensively in
this textbook as a tool for sound design. The program is in active development
and improving all the time. It is a free alternative to Max/MSPTM that many
see as an improvement.

The primary application of Pure Data is processing sound, which is what it
was designed for. However, it has grown into a general purpose signal processing
environment with many other uses. Collections of video processing externals
exist called Gem, PDP and Gridflow which can be used to create 3D scenes
and manipulate 2D images. It has a great collection of interfacing objects, so
you can easily attach joysticks, sensors and motors to prototype robotics or
make interactive media installations. It is also a wonderful teaching tool for
audio signal processing. Its economy of visual expression is a blessing: in other
words it doesn’t look too fancy, which makes looking at complex programs much
easier on the eye. There is a very powerful idea behind “The diagram is the
program”. Each patch contains its complete state visually so you can reproduce
any example just from the diagram. That makes it a visual description of sound.

The question is often asked “Is Pure Data a programming language?”. The
answer is yes, in fact it is a Turing complete language capable of doing anything
that can be expressed algorithmically, but there are tasks such as building text
applications or websites that Pure Data is ill suited to. It is a specialised
programming language that does the job it was designed for very well, processing
signals. It is like many other GUI frameworks or DSP environments which
operate inside a “canned loop”1 and are not truly open programming languages.
There is a limited concept of iteration, programmatic branching, and conditional
behaviour. At heart dataflow programming is very simple. If you understand
object oriented programming, think of the objects as having methods which are
called by data, and can only return data. Behind the scenes Pure Data is quite
sophisticated. To make signal programming simple it hides away behaviour like

1A canned loop is used to refer to languages in which the real low level programmatic flow
is handled by an interpreter that the user is unaware of



6 Starting with Pure Data

deallocation of deleted objects and manages the execution graph of a multi-rate
DSP object interpreter and scheduler.

Installing and running Pure Data

Grab the latest version for your computer platform by searching the internet
for it. There are versions available for Mac, Windows and Linux systems. On
Debian based Linux systems you can easily install it by typing:

$ apt-get install puredata

Ubuntu and RedHat users will find the appropriate installer in their package
management systems, and MacOSX or Windows users will find an installer
program online. Try to use the most up to date version with libraries. The
pd-extended build includes extra libraries so you don’t need to install them sep-
arately. When you run it you should see a console window that looks something
like Fig. 2.1.

fig 2.1: Pure Data console

Testing Pure Data

The first thing to do is turn on the audio and test it. Start by entering the
Media menu on the top bar and select Audio ON (or either check the compute
audio box in the console window, or press CTRL+/ on the keyboard.) From
the Media→Test-Audio-and-MIDI menu, turn on the test signal. You should
hear a clear tone through your speakers, quiet when set to -40.0dB and much
louder when set to -20.0dB . When you are satisfied that Pure Data is making
sound close the test window and continue reading. If you don’t hear a sound
you may need to choose the correct audio settings for your machine. The audio
settings summary will look like that shown in Fig. 2.3. Choices available might
be Jack, ASIO, OSS, ALSA or the name of a specific device you have installed
as a sound card. Most times the default settings will work. If you are using
Jack (recommended), then check that Jack audio is running with qjackctl on



2.2 How does Pure Data work? 7

fig 2.2: Test signal

Linux or jack-pilot on MacOSX. Sample rate is automatically taken from the
soundcard.

fig 2.3: Audio settings pane.

SECTION 2.2

How does Pure Data work?

Pure Data uses a kind of programming called dataflow, because the data
flows along connections and through objects which process it. The output of
one process feeds into the input of another and there may be many steps in the
flow.



8 Starting with Pure Data

Objects

Here is a box . A musical box, wound up and ready to play. We call these
boxes objects. Stuff goes in, stuff comes out. For it to pass into, or out of
them, objects must have inlets or outlets. Inlets are at the top of an object box,
outlets are at the bottom. Here is an object that has two inlets and one outlet:

. They are shown by small “tabs” on the edge of the object box. Objects
contain processes or procedures which change the things appearing at their
inlets and then send the results to one or more outlets. Each object performs
some simple function and has a name appearing in its box that identifies what
it does. There are two kinds of object, intrinsics which are part of the core
Pd program, and externals which are separate files containing add-ons to the
core functions. Collections of externals are called libraries and can be added to
extend the functionality of Pd. Most of the time you will neither know nor care
whether an object is intrinsic or external. In this book and elsewhere the words
process, function and unit are all occasionally used to refer to the object boxes
in Pd.

Connections

The connections between objects are sometimes called cords or wires. They
are drawn in a straight line between the outlet of one object and the inlet of
another. It is okay for them to cross, but you should try to avoid this since it
makes the patch diagram harder to read. At present there are two degrees of
thickness for cords. Thin ones carry message data and fatter ones carry audio
signals. Max/MSPTM and probably future versions of Pd will offer different
colours to indicate the data types carried by wires.

Data

The “stuff” being processed comes in several flavours, video frames, sound sig-
nals and messages. In this book we will only be concerned with sounds and
messages. Objects give clues about what kind of data they process by their
name. For example, an object that adds together two sound signals looks like
+~ . The + means this is an addition object, and the ∼ (tilde character) means
it object operates on signals. Objects without the tilde are used to process mes-
sages, which we shall concentrate on before studying audio signal processing.

Patches

A collection of objects wired together is a program or patch. For historical
reasons the words program and patch2 are used to mean the same thing in
sound synthesis. Patches are an older way of describing a synthesiser built from
modular units connected together with patch cords. Because inlets and outlets
are at the top and bottom of objects the data flow is generally down the patch.
Some objects have more than one inlet or more than one outlet, so signals and
messages can be a function of many others and may in turn generate multiple

2A different meaning of patch to the one programmers use to describe changes made to a
program to removes bugs



2.2 How does Pure Data work? 9

new data streams. To construct a program we place processing objects onto an
empty area called a canvas, then connect them together with wires representing
pathways for data to flow along. On each step of a Pure Data program any
new input data is fed into objects, triggering them to compute a result. This
result is fed into the next connected object and so on until the entire chain of
objects, starting with the first and ending with the last have all been computed.
The program then proceeds to the next step, which is to do the same thing all
over again, forever. Each object maintains a state which persists throughout
the execution of the program but may change on each step. Message processing
objects sit idle until they receive some data rather than constantly processing an
empty stream, so we say Pure Data is an event driven system. Audio processing
objects are always running, unless you explicitly tell them to switch off.

A deeper look at Pd

Before moving on to make some patches consider a quick aside about how Pd
actually interprets its patches and how it works in a wider context. A patch,
or dataflow graph, is navigated by the interpreter to decide when to compute
certain operations. This traversal is right to left and depth first, which is a
computer science way of saying it looks a ahead and tries to go as deep as it
can before moving on to anything higher and moves from right to left at any
branches. This is another way of saying it wants to know what depends on what
before deciding to calculate anything. Although we think of data flowing down
the graph the nodes in Fig. 2.4 are numbered to show how Pd really thinks
about things. Most of the time this isn’t very important unless you have to
debug a subtle error.

Pure Data software architecture

Pure Data actually consists of more than one program. The main part called pd
performs all the real work and is the interpreter, scheduler and audio engine. A
separate program is usually launched whenever you start the main engine which
is called the pd-gui. This is the part you will interact with when building Pure
Data programs. It creates files to be read by pd and automatically passes them
to the engine. There is a third program called the pd-watchdog which runs
as a completely separate process. The job of the watchdog is to keep an eye on
the execution of programs by the engine and try to gracefully halt the program
if it runs into serious trouble or exceeds available CPU resources. The context
of the pd program is shown in Fig. 2.5 in terms of other files and devices.

Your first patch

Let’s now begin to create a Pd patch as an introductory exercise. We will create
some objects and wire them together as a way to explore the interface.

Creating a canvas

A canvas is the name for the sheet or window on which you place objects. You
can resize a canvas to make it as big as you like. When it is smaller than the
patch it contains, horizontal and vertical scrollbars will allow you to change the



10 Starting with Pure Data

/ 4

pow 2

+  

+ 1

trigger f f

* 5

11

55

100

25

80

10

4 1

2

3

5

6

7

Right to left

Depth first

10

t

1010

^2+ 1

/ 4* 5

2555

10011

+

80

2x
4

+ 5(x+1)

Distribute

Times five

Add one Squared

Divide by four

Add both branches

x

How we humans look at dataflow How Pd looks at the graph

fig 2.4: Dataflow computation

area displayed. When you save a canvas its size and position on the desktop
are stored. From the console menu select File→New or type CTRL+n at the
keyboard. A new blank canvas will appear on your desktop.

New object placement

To place an object on the canvas select Put→Object from the menu or use
CTRL+1 on the keyboard. An active, dotted box will appear. Move it somewhere
on the canvas using the mouse and click to fix it in place. You can now type the
name of the new object, so type the multiply character * into the box. When
you have finished typing click anywhere on the blank canvas to complete the
operation. When Pure Data recognises the object name you give, it immediately
changes the object box boundary to a solid line and adds a number of inlets
and outlets. You should see a *  on the canvas now.

*  

+  

fig 2.6: Objects
on a canvas

Pure Data searches the paths it knows for objects, which in-
cludes the current working directory. If it doesn’t recognise an
object because it can’t find a definition anywhere the bound-
ary of the object box remains dotted. Try creating another
object and typing some nonsense into it, the boundary will
stay dotted and no inlets or outlets will be assigned. To delete

the object place the mouse cursor close to it, click and hold in order to draw



2.2 How does Pure Data work? 11

display

keyboard

mouse

Interface

pd (main engine)

pd−watchdog

C compiler

pd−gui

Input/Output

audio I/O

parallel ports

serial ports

USB ports

MIDI

UDP/TCP network

OSC

MIDI keyboard

fader box

Wii controller

joystick

microphone/line

loudspeakers

remote machine

Devices Filesystem

sound.wav

source.c

intrinsic objects

abstraction.pd

external objects

textfile.txt

patch−file.pd

fig 2.5: Pure Data software architecture

a selection box around it, then hit delete on the keyboard. Create another
object beneath the last one with an addition symbol so your canvas looks like
Fig. 2.6

Edit mode and wiring

When you create a new object from the menu Pd automatically enters edit
mode, so if you just completed the instructions above you should currently be
in edit mode. In this mode you can make connections between objects, or delete
objects and connections.

+  

*  

fig 2.7: Wiring
objects

Hovering over an outlet will change the mouse cursor to a
new “wiring tool”. If you click and hold the mouse when
the tool is active you will be able to drag a connection away
from the object. Hovering over a compatible inlet while in
this state will allow you to release the mouse and make a new
connection. Connect together the two objects you made so
that your canvas looks like Fig. 2.7. If you want to delete a

connection it’s easy, click on the connection to select it and then hit the delete
key. When in edit mode you can move any object to another place by clicking
over it and dragging with the mouse. Any connections already made to the
object will follow along. You can pick up and move more than one object if you
draw a selection box around them first.

Initial parameters

Most objects can take some initial parameters or arguments, but these aren’t
always required. They can be created without any if you are going to pass data
via the inlets as the patch is running. The +  object can be written as + 3 to



12 Starting with Pure Data

create an object which always adds 3 to its input. Uninitialised values generally
resort to zero so the default behaviour of +  would be to add 0 to its input,
which is the same as doing nothing. Contrast this to the default behaviour of
*  which always gives zero.

Modifying objects

You can also change the contents of any object box to alter the name and
function, or to add parameters.

* 5

+ 3

fig 2.8: Chang-
ing objects

In Fig. 2.8 the objects have been changed to give them initial
parameters. The multiply object is given a parameter of 5,
which means it multiplies its input by 5 no matter what comes
in. If the input is 4 then the output will be 20. To change the
contents of an object click on the middle of the box where the
name is and type the new text. Alternatively click once, and
then again at the end of the text to append new stuff, such

as adding 5 and 3 to the objects shown in Fig. 2.8

Number input and output

10

53

* 5

+ 3

fig 2.9: Number
boxes

One of the easiest ways to create and view numerical data
is to use number boxes. These can act as input devices to
generate numbers, or as displays to show you the data on a
wire. Create one by choosing Put→Number from the canvas
menu, or use CTRL+3, and place it above the *  object. Wire
it to the left inlet. Place another below the +  object and
wire the object outlet to the top of the number box as shown

in Fig. 2.9.

Toggling edit mode

Pressing CTRL+E on the keyboard will also enter edit mode. This key combina-
tion toggles modes, so hitting CTRL+E again exits edit mode. Exit edit mode
now by hitting CTRL+E or selecting Edit→Edit mode from the canvas menu.
The mouse cursor will change and you will no longer be able to move or modify
object boxes. However, in this mode you can operate the patch components
such as buttons and sliders normally. Place the mouse in the top number box,
click and hold and move it upwards. This input number value will change, and
it will send messages to the objects below it. You will see the second number
box change too as the patch computes the equation y = 5x+3. To re-enter edit
mode hit CTRL+E again or place a new object.

More edit operations

Other familiar editing operations are available while in edit mode. You can cut
or copy objects to a buffer or paste them back into the canvas, or to another
canvas opened with the same instance of Pd. Take care with pasting objects
in the buffer because they will appear directly on top of the last object copied.
To select a group of objects you can drag a box around them with the mouse.



2.3 Message data and GUI boxes 13

Holding SHIFT while selecting allows multiple separate objects to be added to
the buffer.

• CTRL+A Select all objects on canvas.
• CTRL+D Duplicate the selection.
• CTRL+C Copy the selection.
• CTRL+V Paste the selection.
• CTRL+X Cut the selection.
• SHIFT Select multiple objects.

Duplicating a group of objects will also duplicate any connections between them.
You may modify an object once created and wired up without having it discon-
nect so long as the new one is compatible the existing inlets and outlets, for
example replacing +  with -  . Clicking on the object text will allow you
to retype the name and, if valid, the old object is deleted and its replacement
remains connected as before.

Patch files

Pd files are regular text files in which patches are stored. Their names always
end with a .pd file extension. Each consists of a netlist which is a collection of
object definitions and connections between them. The file format is terse and
difficult to understand, which is why we use the GUI for editing. Often there
is a one to one correspondence between a patch, a single canvas, and a file, but
you can work using multiple files if you like because all canvases opened by the
same instance of Pd can communicate via global variables or through send and
receive objects. Patch files shouldn’t really be modified in a text editor unless
you are an expert Pure Data user, though a plaintext format is useful because
you can do things like search for and replace all occurrences of an object. To
save the current canvas into a file select File→Save from the menu or use the
keyboard shortcut CTRL+s. If you have not saved the file previously a dialogue
panel will open to let you choose a location and file name. This would be a good
time to create a folder for your Pd patches somewhere convenient. Loading a
patch, as you would expect, is achieved with File→Open or CTRL+o.

SECTION 2.3

Message data and GUI boxes

We will briefly tour the basic data types that Pd uses along with GUI objects
that can display or generate that data for us. The message data itself should
not be confused with the objects that can be used to display or input it, so
we distinguish messages from boxes. A message is an event, or a piece of
data that gets sent between two objects. It is invisible as it travels down the
wires, unless we print it or view it in some other way like with the number boxes
above. A message can be very short, only one number or character, or very long,
perhaps holding an entire musical score or synthesiser parameter set. They can
be floating point numbers, lists, symbols, or pointers which are references to
other types like datastructures. Messages happen in logical time, which means



14 Starting with Pure Data

that they aren’t synchronised to any real timebase. Pd processes them as fast
as it can, so when you change the input number box, the output number box
changes instantly. Let’s look at some other message types we’ll encounter while
building patches to create sound. All GUI objects can be placed on a canvas
using the Put menu or using keyboard shortcuts CTRL+1 through CTRL+8, and
all have properties which you can access by clicking them while in edit mode
and selecting the properties pop-up menu item. Properties include things like
colour, ranges, labels and size and are set per instance.

Selectors

With the exception of a bang message, all other message types carry an invisible
selector, which is a symbol at the head of the message. This describes the “type”
of the remaining message, whether it represents a symbol, number, pointer or
list. Object boxes and GUI components are only able to handle appropriate
messages. When a message arrives at an inlet the object looks at the selector
and searches to see if it knows of an appropriate method to deal with it. An
error results when an incompatible data type arrives at an inlet, so for example,
if you supply a symbol type message to a delay object it will complain. . .

error: delay: no method for ’symbol’

Bang message

This is the most fundamental, and smallest message. It just means “compute
something”. Bangs cause most objects to output their current value or advance
to their next state. Other messages have an implicit bang so they don’t need to
be followed with a bang to make them work. A bang has no value, it is just a
bang.

Bang box

A bang box looks like this, and sends and receives a bang message. It briefly
changes colour, like this , whenever it is clicked or upon receipt of a bang
message to show you one has been sent or received. These may be used as
buttons to initiate actions or as indicators to show events.

Float messages

Floats are another name for numbers. As well as regular (integer) numbers like
1, 2, 3 and negative numbers like −10 we need numbers with decimal points like
−198753.2 or 10.576 to accurately represent numerical data. These are called
floating point numbers, because of the way computers represent the decimal
point position. If you understand some computer science then it’s worth noting
that there are no integers in Pd, everything is a float, even if it appears to be
an integer, so 1 is really 1.0000000. Current versions of Pd use a 32 bit float
representation, so they are between −8388608 and 8388608.

Number box

For float numbers we have already met the number box, which is a dual purpose
GUI element. Its function is to either display a number, or allow you to input



2.3 Message data and GUI boxes 15

one. A bevelled top right corner like this 0 denotes that this object is a
number box. Numbers received on the inlet are displayed and passed directly to
the outlet. To input a number click and hold the mouse over the value field and
move the mouse up or down. You can also type in numbers. Click on a number
box, type the number and hit RETURN. Number boxes are a compact replacement
for faders. By default it will display up to five digits including a sign if negative,
-9999 to 99999, but you can change this by editing its properties. Holding SHIFT
while moving the mouse allows a finer degree of control. It is also possible to
set an upper and lower limit from the properties dialog.

Toggle box

Another object that works with floats is a toggle box. Like a checkbox on any
standard GUI or web form, this has only two states, on or off. When clicked
a cross appears in the box like and it sends out a number 1, clicking again
causes it to send out a number 0 and removes the cross so it looks like this .
It also has an inlet which sets the value, so it can be used to display a binary
state. Sending a bang to the inlet of a toggle box does not cause the current
value to be output, instead it flips the toggle to the opposite state and outputs
this value. Editing properties also allows you to send numbers other than 1
for the active state.

Sliders and other numerical GUI elements

GUI elements for horizontal and vertical sliders can be used as input and display
elements. Their default range is 0 to 127, nice for MIDI controllers, but like
all other GUI objects this can be changed in their properties window. Unlike
those found in some other GUI systems, Pd sliders do not have a step value.
Shown in Fig. 2.10 are some GUI objects at their standard sizes. They can be

<-99

-50

-30

-20

-12

-6

-2

-0dB

+2

+6

>+12

B  A  

C  
D  E  

fig 2.10: GUI Objects A: Horizontal slider B: Horizontal radio box C: Vertical radio box D:
Vertical slider E: VU meter

ornamented with labels or created in any colour. Resizing the slider to make it
bigger will increase the step resolution. A radio box provides a set of mutually
exclusive buttons which output a number starting at zero. Again, they work
equally well as indicators or input elements. A better way to visually display
an audio level is to use a VU meter. This is set up to indicate decibels, so has a
rather strange scale from −99.0 to +12.0. Audio signals that range from −1.0



16 Starting with Pure Data

to +1.0 must first be scaled using the appropriate object. The VU is one of the
few GUI elements that only acts as a display.

General messages

Floats and bangs are types of message, but messages can be more general. Other
message types can be created by prepending a selector that gives them special
meanings. For example, to construct lists we can prepend a list selector to a
set of other types.

Message box

These are visual containers for user definable messages. They can be used to
input or store a message. The right edge of a message box is curved inwards
like this    , and it always has only one inlet and one outlet. They behave
as GUI elements, so when you click a message box it sends its contents to the
outlet. This action can also be triggered if the message box receives a bang
message on its inlet. Message boxes do some clever thinking for us. If we store
something like 5.0 it knows that is a float and outputs a float type, but if we
create a message with text then it will send out a list of symbols, so it is type aware
which saves us having to say things like “float 1.0” as we would in C programs.
It can also abbreviate floating point numbers like 1.0 to 1, which saves time
when inputting integer values, but it knows that they are really floats.

Symbolic messages

A symbol generally is a word or some text. A symbol can represent anything, it
is the most basic textural message in Pure Data. Technically a symbol in Pd can
contain any printable or non-printable character. But most of the time you will
only encounter symbols made out of letters, numbers and some interpunctuation
characters like dash, dot or underscore. The Pd editor does some automatic
conversions: words that can also be interpreted as a number (like 3.141 or 1e +
20) are converted to a float internally (but +20 still is a symbol!). Whitespace
is used by the editor to separate symbols from each other, so you cannot type
a symbol including a space character into a message box. To generate symbols
with backslash-escaped whitespace or other special characters inside use the
makefilename symbol maker object. The openpanel file dialog object preserves and
escapes spaces and other special characters in filenames, too. Valid symbols are
badger, sound 2, or all your base but not hello there (which is two symbols), or
20 (which will be interpreted as a float, 20.0).

Symbol box

For displaying or inputting text you may use a symbol box. Click on the display
field and type any text that is a valid symbol and then hit ENTER/RETURN. This
will send a symbol message to the outlet of the box. Likewise, if a symbol
message is received at the inlet it will be displayed as text. Sending a bang
message to a symbol box makes it output any symbol it already contains.



2.3 Message data and GUI boxes 17

Lists

A list is an ordered collection of any things, floats, symbols or pointers that
are treated as one. Lists of floats might be used for building melody sequences
or setting the time values for an envelope generator. Lists of symbols can be
used to represent text data from a file or keyboard input. Most of the time
we will be interested in lists of numbers. A list like {2 127 3.14159 12 } has
four elements, the first element is 2.0 and the last is 12.0. Internally, Pure Data
recognises a list because it has a list selector at the start, so it treats all following
parts of the message as ordered list elements. When a list is sent as a message
all its elements are sent at once. A list selector is attached to the beginning
of the message to determine its type. The selector is the word “list”, which
has a special meaning to Pd. Lists may be of mixed types like {5 6 pick up

sticks}, which has two floats and three symbols. When a list message contains
only one item which is a float it is automatically changed (cast) back to a float.
Lists can be created in several ways, by using a message box, or by using pack ,
which we will meet later, to pack data elements into a list.

Pointers

As in other programming languages, a pointer is the address of some other
piece of data. We can use them to build more complex datastructures, such as
a pointer to a list of pointers to lists of floats and symbols. Special objects exist
for creating and dereferencing pointers, but since they are an advanced topic we
will not explore them further in this book.

Tables, arrays and graphs

A table is sometimes used interchangeably with an array to mean a two di-
mensional data structure. An array is one of the few invisible objects. Once
declared it just exists in memory. To see it, a separate graph like that shown in
Fig. 2.11 allows us to view its contents.

array1

fig 2.11: An array.

Graphs have the wonderful property that they are
also GUI elements. You can draw data directly into a
graph using the mouse and it will modify the array it is
attached to. You can see a graph of array1 in Fig. 2.11
that has been drawn by hand. Similarly, if the data in
an array changes and it’s attached to a visible graph
then the graph will show the data as it updates. This
is perfect for drawing detailed envelopes or making an

oscilloscope display of rapidly changing signals.



18 Starting with Pure Data

fig 2.12: Create array.

To create a new array select Put→Array from the
menu and complete the dialog box to set up its
name, size and display characteristics. On the can-
vas a graph will appear showing an array with all
its values initialised to zero. The Y-axis range is
−1.0 to +1.0 by default, so the data line will be in
the centre. If the save contents box is checked
then the array data will be saved along with the
patch file. Be aware that long sound files stored
in arrays will make large patch files when saved
this way. Three draw styles are available, points,
polygon and Bezier to show the data with varying
degrees of smoothing. It is possible to use the same
graph to display more than one array, which is very useful when you wish to see
the relationship between two or more sets of data. To get this behaviour use
the in last graph option when creating an array.

0.25 24

24

0.25

tabwrite a1

tabread a1

a1

fig 2.13: Accessing an array.

Data is written into or read from a table by an
index number which refers to a position within
it. The index is a whole number. To read and
write arrays several kinds of accessor object are
available. The tabread and tabwrite objects al-
low you to communicate with arrays using mes-
sages. Later we will meet tabread4~ and tabwrite~

objects that can read and write audio signals.
The array a1 shown in Fig. 2.13 is written to by
the tabwrite object above it, which specifies the
target array name as a parameter. The right in-
let sets the index and the left one sets the value.
Below it a tabread object takes the index on its

inlet and returns the current value.

SECTION 2.4

Getting help with Pure Data

At http://puredata.hurleur.com/ there is an active, friendly forum, and
the mailing list can be subscribed to at pd-list@iem.at

Exercises

Exercise 1

On Linux, type pd --help at the console to see the available startup options.
On Windows or MacOSX read the help documentation that comes with your
downloaded distribution.



2.4 Getting help with Pure Data 19

Exercise 2

Use the Help menu, select browse help and read through some built in docu-
mentation pages. Be familiar with the control examples and audio examples
sections.

Exercise 3

Visit the online pdwiki at http://puredata.org to look at the enormous range
of objects available in pd-extended.

References

Puckette, M. (1996) “Pure Data: another integrated computer music environ-
ment.” Proceedings, Second Intercollege Computer Music Concerts, Tachikawa,
Japan, pp. 37-41.
Puckette, M. (1996) “Pure Data.” Proceedings, International Computer Music
Conference. San Francisco: International Computer Music Association, pp.
269-272.
Puckette, M. (1997) “Pure Data: recent progress.” Proceedings, Third Inter-
college Computer Music Festival, Tokyo, Japan, pp. 1-4.
Puckette, M. (2007) “The Theory and Technique of Electronic Music” ISBN
978-981-270-077-3 (World Scientific Press, Singapore)
Zimmer, Frnk. (Editor) (2006) “Bang - A Pure Data Book” ISBN-10 3-936000-
37-9 (Wolke-Verlag)
Winkler, T. (1998) “Composing Interactive Music, Techniques and Ideas Using
Max” ISBN-10:0-262-23193-X (MIT)
Arduino I/O boards http://www.arduino.cc/


