
47

CHAPTER 5

Abstraction

SECTION 5.1

Subpatches

Any patch canvas can contain subpatches which have their own canvas but
reside within the same file as the main patch, called the parent. They have inlets
and outlets, which you define, so they behave very much like regular objects.
When you save a canvas all subpatches that belong to it are automatically saved.
A subpatch is just a neat way to hide code, it does not automatically offer the
benefit of local scope1.

100 500

osc~ 440

*~

dac~

pd envelope

fig 5.1: Using an envelope
subpatch

Any object that you create with a name beginning
pd will be a subpatch. If we create a subpatch called
pd envelope as seen in Fig. 5.1 a new canvas will appear
and we can make inlet and outlet objects inside it as
shown in Fig. 5.2. These appear as connections on
the outside of the subpatch box in the same order
they appear left to right inside the subpatch. I’ve
given extra (optional) name parameters to the sub-

patch inlets and outlets. These are unnecessary, but when you have a subpatch
with several inlets or outlets it’s good to give them names to keep track of things
and remind yourself of their function.

inlet attack inlet decay

line~

1 $1 0 $1

inlet trigger

t b b

f f

del

outlet~ envelope

fig 5.2: Inside the envelope sub-
patch

To use pd envelope we supply a bang on the first
inlet to trigger it, and two values for attack
and decay. In Fig. 5.1 it modulates the output
of an oscillator running at 440Hz before the
signal is sent to dac~ . The envelope has a
trigger inlet for a message to bang two floats
stored from the remaining inlets, one for the
attack time in milliseconds and one for the
decay time in milliseconds. The attack time
also sets the period of a delay so that the decay

portion of the envelope is not triggered until the attack part has finished. These
values are substituted into the time parameter of a 2 element list for line~ .

Copying subpatches

So long as we haven’t used any objects requiring unique names any subpatch
can be copied. Select pd envelope and hit CTRL+D to duplicate it. Having made

1As an advanced topic subpatches can be used as target name for dynamic patching com-
mands or to hold datastructures.

48 Abstraction

one envelope generator it’s a few simple steps to turn it into a MIDI mono
synthesiser (shown in Fig. 5.3) based on an earlier example by replacing the
osc~ with a phasor~ and adding a filter controlled by the second envelope in the
range 0 to 2000Hz. Try duplicating the envelope again to add a pitch sweep to
the synthesiser.

10 500

*~

dac~

pd envelope pd envelope

40 500

trigger bang bang

vcf~ 1 1

*~ 2000phasor~ 55

notein

mtof

> 0

sel 1

fig 5.3: Simple mono MIDI synth made using two copies of the same envelope subpatch

Deep subpatches

Consider an object giving us the vector magnitude of two numbers. This is the
same as the hypotenuse c of a right angled triangle with opposite and adjacent
sides a and b and has the formula c =

√
a2 + b2. There is no intrinsic object to

compute this, so let’s make our own subpatch to do the job as an exercise.

3 4

5

pd magnitude

fig 5.4: Vec-
tor magnitude

We begin by creating a new object box and typing pd magnitude
into it. A new blank canvas will immediately open for us to
define the internals. Inside this new canvas create two new object
boxes at the top by typing the word inlet into each. Create
one more object box at the bottom as an outlet. Two input

numbers a and b will come in through these inlets and the result c will go to
the outlet.

inlet inlet

pd squaredpd squared

sqrt

+

outlet

fig 5.5: Subpatch

calculates
√

a2 + b2

When turning a formula into a dataflow patch it sometimes
helps to think in reverse, from the bottom up towards the
top. In words, c is the square root of the sum of two other
terms, the square of a and the square of b. Begin by creating
a sqrt object and connecting it to the outlet. Now create and
connect a + object to the inlet of the sqrt . All we need to
complete the example is an object that gives us the square
of a number. We will define our own as a way to show
that subpatches can contain other subpatches. And in fact this can go as deep
as you like. It is one of the principles of abstraction, that we can define new

5.1 Subpatches 49

objects, build bigger objects from those and still bigger objects in turn. Make
a new object pd squared and when the canvas opens add the parts shown in
Fig. 5.6.

t f f

*

outlet x-squared

inlet x

fig 5.6: Sub-
patch to com-
pute x2

To square a number you multiply it by itself. Remember why we
use a trigger to split the input before sending it to each inlet of
the multiply? We must respect evaluation order, so the trigger
here distributes both copies of its input from right to left, the
“cold” right inlet of * is filled first, then the “hot” left inlet.
Close this canvas and connect up your new pd squared subpatch.
Notice it now has an inlet and outlet on its box. Since we need
two of them duplicate it by selecting then hitting CTRL+D on

the keyboard. Your complete subpatch to calculate magnitude should look like
Fig. 5.5. Close this canvas to return to the original topmost level and see
pd magnitude now defined with two inlets and one outlet. Connect some number
boxes to these as in Fig. 5.4 and test it out.

Abstractions

An abstraction is something that distances an idea from an object, it captures
the essence and generalises it. It makes it useful in other contexts. Superficially
an abstraction is a subpatch that exists in a separate file, but there is more to
it. Subpatches add modularity and make patches easier to understand, which is
one good reason to use them. However, while a subpatch seems like a separate
object it is still part of a larger thing. Abstractions are reusable components
written in plain Pd, but with two important properties. They can be loaded
many times by many patches and although the same code defines all instances
each instance has a separate internal namespace. They can also take creation
arguments, so you can create multiple instances each with a different behaviour
by typing different creation arguments in the object box. Basically, they behave
like regular programming functions that can be called by many other parts of
the program in different ways.

Scope and $0

Some objects like arrays and send objects must have a unique identifier, other-
wise the interpreter cannot be sure which one we are referring to. In program-
ming we have the idea of scope which is like a frame of reference. If I am talking
to Simon in the same room as Kate I don’t need to use Kate’s surname every
time I speak. Simon assumes, from context, that the Kate I am referring to is
the most immediate one. We say that Kate has local scope. If we create an
array within a patch and call it array1 then that’s fine so long as only one copy
of it exists.

50 Abstraction

tabosc4~ array1

110

dac~

; array1 sinesum 64 1

array1

loadbang

fig 5.7: Table oscillator
patch

Consider the table oscillator patch in Fig. 5.7 which
uses an array to hold a sine wave. There are three
significant parts, a tabosc4~ running at 110Hz, a table
to hold one cycle of the waveform and an initialisation
message to fill the table with a waveform. What if we
want to make a multi-oscillator synthesiser using this
method, but with a square wave in a one table and a
triangle wave in another? We could make a subpatch

of this arrangement and copy it, or just copy everything shown here within the
main canvas. But if we do that without changing the array name, Pd will say;

warning: array1: multiply defined
warning: array1: multiply defined

The warning message is given twice because while checking the first array it
notices another one with the same name, then later, while checking the duplicate
array, it notices the first one has the same name. This is a serious warning
and if we ignore it erratic, ill defined behaviour will result. We could rename
each array we create as array1, array2, array3 etc, but that becomes tedious.
What we can to do is make the table oscillator an abstraction and give the array
a special name that will give it local scope. To do this, select everything with
CTRL+E, CTRL+A and make a new file from the file menu (Or you can use CTRL+N
as a shortcut to make a new canvas). Paste the objects into the new canvas
with CTRL+V and save it as my-tabosc.pd in a directory called tableocillator.
The name of the directory isn’t important, but it is important that we know
where this abstraction lives so that other patches that will use it can find it.
Now create another new blank file and save it as wavetablesynth in the same
directory as the abstraction. This is a patch that will use the abstraction. By
default a patch can find any abstraction that lives in the same directory as itself.

SECTION 5.2

Instantiation

Create a new object in the empty patch and type my-tabosc in the object
box. Now you have an instance of the abstraction. Open it just as you would
edit a normal subpatch and make the following changes as shown in Fig. 5.8;

sinesum 64 1

loadbang

tabosc4~ $0-array1

inlet pitch

s $0-array1outlet~

$0-array1

fig 5.8: Table oscillator ab-
straction

First we have replaced the number box with an inlet
so that pitch data can come from outside the ab-
straction. Instead of a dac~ the audio signal appears
on an outlet we’ve provided. The most important
change is the name of the array. Changing it to
$0-array1 gives it a special property. Adding the
$0- prefix makes it local to the abstraction because
at runtime, $0- is replaced by a unique per instance
number. Of course we have renamed the array ref-

erenced by tabosc4~ too. Notice another slight change in the table initialisation

5.3 Editing 51

code, the message to create a sine wave is sent explicitly through a send because
$0- inside a message box is treated in a different way.

SECTION 5.3

Editing

my-tabosc my-tabosc my-tabosc

110 220 330

*~ 0.333

dac~

fig 5.9: Three harmonics
using the table oscillator
abstraction

Now that we have an abstracted table oscillator let’s in-
stantiate a few copies. In Fig. 5.9 there are three copies.
Notice that no error messages appear at the console, as
far as Pd is concerned each table is now unique. There
is something important to note here though. If you
open one of the abstraction instances and begin to edit
it the changes you make will immediately take effect as

with a subpatch, but they will only affect that instance. Not until you save an
edited abstraction do the changes take place in all instances of the abstraction.
Unlike subpatches, abstractions will not automatically be saved along with their
parent patch and must be saved explicitly. Always be extra careful when editing
abstractions to consider what the effects will be on all patches that use them. As
you begin to build a library of reusable abstractions you may sometimes make
a change for the benefit of one project that breaks another. How do you get
around this problem? The answer is to develop a disciplined use of namespaces,
prefixing each abstraction with something unique until you are sure you have a
finished, general version that can used in all patches and will not change any
more. It is also good practice to write help files for your abstractions. A file in
the same directory as an abstraction, with the same name but ending -help.pd
will be displayed when using the object help facility.

SECTION 5.4

Parameters

Making local data and variables is only one of the benefits of abstraction.
A far more powerful property is that an abstraction passes any parameters
given as creation arguments through local variables $1, $2, $3. . . In traditional
programming terms this behaviour is more like a function than a code block.
Each instance of an abstraction can be created with completely different initial
arguments. Let’s see this in action by modifying our table oscillator to take
arguments for initial frequency and waveform. In Fig. 5.10 we see several
interesting changes. Firstly, there are two float boxes that have $n parameters.
You can use as many of these as you like and each of them will contain the nth
creation parameter. They are all banged when the abstraction is loaded by the
loadbang . The first sets the initial pitch of the oscillator, though of course this can
still be over-ridden by later messages at the pitch inlet. The second activates one
of three messages via select which contain harmonic series of square, sawtooth
and sine waves respectively.

52 Abstraction

loadbang

tabosc4~ $0-array1

inlet pitch

sinesum 64 1 0 0.333 0 0.2 0 0.143 0 0.111 0 0.0909

s $0-array1

outlet~

f $1 f $2

sinesum 64 0.5 0.25 0.125 0.062 0.031 0.015 0.007

sinesum 64 1

sel 0 1 2

$0-array1

fig 5.10: Table oscillator abstraction with initialised frequency and shape.

SECTION 5.5

Defaults and states

A quick word about default parameters. Try creating some instances of
the abstraction in Fig. 5.10 (shown as my-tabsosc2 in Fig. 5.11)2. Give one
a first parameter of 100Hz but no second parameter. What happens is useful,
the missing parameter is taken to be zero. That’s because float defaults to
zero for an undefined argument. That’s fine most of the time, because you can
arrange for a zero to produce the behaviour you want. But, what happens if
you create the object with no parameters at all? The frequency is set to 0Hz of
course, which is probably useful behaviour, but let’s say we wanted to have the
oscillator start at 440Hz when the pitch is unspecified. You can do this with
sel 0 so that zero value floats trigger a message with the desired default. Be
careful choosing default behaviours for abstractions, they are one of the most
common causes of problems later when the defaults that seemed good in one case
are wrong in another. Another important point pertains to initial parameters
of GUI components, which will be clearer in just a moment as we consider
abstractions with built in interfaces. Any object that persistently maintains
state (keeps its value between saves and loads) will be the same for all instances
of the abstraction loaded. It can only have one set of values (those saved in the
abstraction file). In other words it is the abstraction class that holds state, not
the object instances. This is annoying when you have several instances of the
same abstraction in a patch and want them to individually maintain persistent
state. To do this you need a state saving wrapper like memento or sssad , but that
is a bit beyond the scope of this textbook.

2The graphs with connections to them shown here, and elsewhere in the book, are ab-
stractions that contain everything necsessary to display a small time or spectrum graph from
signals received at an inlet. This is done to save space by not showing this in every diagram.

5.6 Common abstraction techniques 53

my-tabosc2 640 0 my-tabosc2 1280 1 my-tabosc2 1920 0

pd grapha
B

pd grapha
C

pd grapha
A

fig 5.11: Three different waveforms and frequencies from the same table oscillator abstraction

SECTION 5.6

Common abstraction techniques

Here are a few tricks regularly used with abstractions and subpatches. With
these you can create neat and tidy patches and manage large projects made of
reusable general components.

Graph On Parent

It’s easy to build nice looking interfaces in Pd using GUI components like sliders
and buttons. As a rule it is best to collect all interface components for an
application together in one place and send the values to where they are needed
deeper within subpatches. At some point it’s necessary to expose the interface
to the user, so that when an object is created it appears with a selection of GUI
components laid out in a neat way.

Clobber

Ooomph

Knarleyness

pd hardsynth

inlet midi note

fig 5.12: Graph on parent synth

“Graph on Parent” (or GOP) is a property of
the canvas which lets you see inside from out-
side the object box. Normal objects like os-
cillators are not visible, but GUI components,
including graphs are. GOP abstractions can be
nested, so that controls exposed in one abstrac-
tion are visible in a higher abstraction if it is

also set to be GOP. In Fig. 5.12 we see a subpatch which is a MIDI synthesiser
with three controls. We have added three sliders and connected them to the
synth. Now we want to make this abstraction, called GOP-hardsynth, into a
GOP abstraction that reveals the controls. Click anywhere on a blank part of
the canvas, choose properties and activate the GOP toggle button. A frame
will appear in the middle of the canvas. In the canvas properties box, set the
size to width = 140 and height = 80, which will nicely frame three standard size
sliders with a little border. Move the sliders into the frame, save the abstraction
and exit.

54 Abstraction

GOP-hardsynth

Clobber

Ooomph

Knarleyness

fig 5.13: Appear-
ance of a GOP ab-
straction

Here is what the abstraction looks like when you create an
instance (Fig. 5.13). Notice that the name of the abstrac-
tion appears at the top, which is why we left a little top
margin to give this space. Although the inlet box partly
enters the frame in Fig. 5.12 it cannot be seen in the ab-
straction instance because only GUI elements are displayed.
Coloured canvases3 also appear in GOP abstractions so if

you want decorations they can be used to make things prettier. Any can-
vases appear above the name in the drawing order so if you want to hide the
name make a canvas that fills up the whole GOP window. The abstraction
name can be turned off altogether from the properties menu by activating
hide object name and arguments.

Using list inputs

inlet f1

osc~ osc~

+ 1

inlet f2

osc~ osc~

inlet f4inlet f3

pd ringmod pd ringmod

pd ringmod

outlet~

* 2000

+ 10

* 100

+ 0.1

* 500 * 5000

+ 100

*~ 0.05

fig 5.14: Preconditioning nor-
malised inlets

The patch in Fig. 5.14 is a fairly arbitrary example
(a 4 source cross ring modulator). It’s the kind of
thing you might develop while working on a sound
or composition. This is the way you might con-
struct a patch during initial experiments, with a
separate inlet for each parameter you want to mod-
ify. There are four inlets in this case, one for each
different frequency that goes into the modulator
stages. The first trick to take note of is the con-
trol pre-conditioners all lined up nicely at the top.
These set the range and offset of each parameter

so we can use uniform controls as explained below.

Packing and unpacking

osc~ osc~

+ 1

osc~ osc~

pd ringmod pd ringmod

pd ringmod

outlet~

* 2000

+ 10

* 100

+ 0.1

* 500 * 5000

+ 100

*~ 0.05

unpack f f f f

inlet params

fig 5.15: Using a list input

What we’ve done here in Fig. 5.15 is simply replace
the inlets with a single inlet that carries a list. The
list is then unpacked into its individual members
which are distributed to each internal parameter.
Remember that lists are unpacked right to left, so
if there was any computational order that needed
taking care of you should start from the rightmost
value and move left. This modification to the patch
means we can use the flexible arrangement shown in
Fig. 5.16 called a “programmer”. It’s just a collec-
tion of normalised sliders connected to a pack object

so that a new list is transmitted each time a fader is moved. In order to do this
it is necessary to insert trigger bang float objects between each slider as shown in
Fig. 5.16 (left). These go on all but the far left inlet. Doing so ensures that the
float value is loaded into pack before all the values are sent again. By prepending

3Here the word “canvas” is just used to mean a decorative background, different from the
regular meaning of patch window.

5.6 Common abstraction techniques 55

freq_2

freq_1

freq_3

freq_4

pack f f f f

t b f t b f t b f

outlet

(a) Packing a list

pd patch

dac~

pd programer

freq_2

freq_1

freq_3

freq_4

0.165354 0.19685 0.165354 0.110236

0.346 0.251 0.22 0.1653

list prepend set

(b) Making a programmer
fig 5.16: Packing and using parameter lists

the keyword set to a list, a message box that receives it will store those values.
Now we have a way of creating patch presets, because the message box always
contains a snapshot of the current fader values. You can see in Fig. 5.16 (right)
some empty messages ready to be filled and one that’s been copied ready to use
later as a preset.

Control normalisation

Most patches require different parameter sets with some control ranges between
0.0 and 1.0, maybe some between 0.0 and 20000, maybe some bipolar ones
−100.0 to +100.0 and so on. But all the sliders in the interface of Fig. 5.17 have
ranges from 0.0 to 1.0. We say the control surface is normalised.

pd patch

freq_2

freq_1

freq_3

freq_4

dac~

fig 5.17: All faders are
normalised 0.0 to 1.0

If you build an interface where the input parameters
have mixed ranges it can get confusing. It means
you generally need a customised set of sliders for each
patch. A better alternative is to normalise the con-
trols, making each input range 0.0 to 1.0 and then
adapting the control ranges as required inside the patch.
Pre-conditioning means adapting the input parame-
ters to best fit the synthesis pamaters. Normalisation

is just one of the tasks carried out at this stage. Occasionally you will see a
log or sqrt used to adjust the parameter curves. Pre-conditioning operations
belong together as close to where the control signals are to be used as possible,
They nearly always follow the same pattern, multiplier, then offset, then curve
adjustment.

Summation chains

Sometimes when you have a lot of subpatches that will be summed to produce
an output it’s nicer to be able to stack them vertically instead of having many
connections going to one place. Giving each an inlet (as in Fig. 5.18) and placing
a +~ object as part of the subpatch makes for easier to read patches.

Routed inputs

A powerful way to assign parameters to destinations while making them human
readable is to use route . Look at Fig. 5.19 to see how you can construct arbitrary

56 Abstraction

pd harmonicinlet~

+~

outlet~

osc~

inlet f pd harmonic

pd harmonic

pd harmonic

unpack f f f f

*~ 0.25

pd harmonic

pd harmonic

pd harmonic

pd harmonic

unpack f f f f

1000 2000 3000 4000

*~ 0.25 instead of doing this

1000 2000 3000 4000

each harmonic
is like this
inside

so you can do this

pd grapha
A

fig 5.18: Stacking subpatches that sum with an inlet

paths like URLs to break subpatches into individually addressable areas.

badger 100

100

mushroom button 50

route button breakfast

50 100

mushroom 10

route viper rattle

route badger mushroom snake bird

0 0 0

0

route swallow starling

route african european

0

route laden unladen

25

bird swallow european unladen 25

1

1

fig 5.19: Route can channel named parameters to a destination

71

CHAPTER 7

Pure Data essentials

This chapter will present some commonly used configurations for mixing, read-
ing and writing files, communication and sequencing. You may want to build up
a library of abstractions for things you do again and again, or to find existing
ones from the pd-extended distribution. All the same, it helps to understand
how these are built from primitive objects since you may wish to customise them
to your own needs.

SECTION 7.1

Channel strip

For most work you will use Pd with multiple audio outlets and an external
mixing desk. But you might find you want to develop software which implements
its own mixing. All mixing desks consist of a few basic elements like gain
controls, buses, panners and mute or channel select buttons. Here we introduce
some basic concepts that can be plugged together to make complex mixers.

Signal switch

*~

dac~

noise~

fig 7.1:
Sig-
nal
switch

All we have to do to control the level of a signal is multiply it by a
number between 0.0 and 1.0. The simplest form of this is a signal switch
where we connect a toggle to one side of a *~ and an audio signal to the
other (Fig. 7.1). The toggle outputs either 1 or 0, so the signal is either
on or off. You will use this frequently to temporarily block a signal.
Because the toggle changes value abruptly it usually produces a click,
so don’t use this simple signal switch when recording audio, for that you
must apply some smoothing as in the mute button below.

Simple level control

*~

dac~

0.5

osc~ 40

fig 7.2:
Direct level
control

To create a level fader start with a vertical slider and set its
properties to a lower value of 0.0 and upper value of 1.0. In
Fig. 7.2 the slider is connected to one inlet of *~ and the signal to
the other, just like the signal switch above except the slider gives a
continuous change between 0.0 and 1.0. A number box displays the
current fader value, 0.5 for a halfway position here. A sine oscilla-
tor at 40Hz provides a test signal. It is okay to mix messages and
audio signals on opposite sides of *~ like this, but because the
slider generates messages any updates will only happen on each

72 Pure Data essentials

block, normally every 64 samples. Move it up and down quickly and listen to
the result. Fading is not perfectly smooth. You will hear a clicking sound when
you move the slider. This zipper noise is caused by the level suddenly jumping
to a new value on a block boundary.

Using a log law fader

*~

dac~

0.5

osc~ 40

fig 7.3: log
level control

The behaviour of slider objects can be changed. If you set its
properties to log instead of linear then smaller values are spread
out over a wider range and larger values are squashed into the
upper part of the movement. This gives you a finer degree of
control over level and is how most real mixing desks work. The
smallest value the slider will output is 0.01. With its top value as
1.0 it will also output 1.0 when fully moved. Between these values
it follows a logarithmic curve. When set to halfway it outputs a
value of about 0.1 and at three quarters of full movement its output is a little
over 0.3. It doesn’t reach an output of 0.5 until nearly nine tenths of its full
movement (shown in Fig. 7.3). This means half the output range is squashed
into the final ten percent of the movement range, so be careful when you have
this log law fader connected to a loud amplifier. Often log law faders are limited
to constrain their range, which can be done with a clip unit.

MIDI fader

*~

dac~

0

0

osc~ 220 / 127

fig 7.4: Scaling a
level

You won’t always want to control a mix from Pd GUI slid-
ers, sometimes you might wish to use a MIDI fader board or
other external control surface. These generally provide a lin-
ear control signal in the range 0 to 127 in integer steps, which
is also the default range of GUI sliders. To convert a MIDI
controller message into the range 0.0 to 1.0 it is divided by 127
(the same as multiplying by 0.0078745) as shown in Fig. 7.4.
The normalised output can be further scaled to a log curve, or multiplied by
100 to obtain a decibel scale and converted via the dbtorms object.

*~

* 0.0078745

ctlin

== 1

&&

spigot

== 7

sig~

lop~ 2inlet~

outlet~

inlet midi-chan

fig 7.5: MIDI level

To connect the fader to an external MIDI device
you need to add a ctlin object. The first out-
let gives the current fader value, the second in-
dicates the continuous controller number and the
third provides the current MIDI channel. Volume
messages are sent on controller number 7. We
combine the outlets using == and spigot so that
only volume control messages on a particular chan-
nel are passed to the fader. The patch shown in
Fig. 7.5 has an audio inlet and outlet. It has an in-
let to set the MIDI channel. It can be subpatched
or abstracted to form one of several components in a complete MIDI controlled
fader board.

7.1 Channel strip 73

Mute button and smooth fades

*~

dac~

1

dbtorms

100

osc~ 90 sig~

lop~ 1

*

t b f

mute

== 0

fig 7.6: mute
switch

After carefully adjusting a level you may want to temporarily si-
lence a channel without moving the slider. A mute button solves
this problem. The fader value is stored at the cold inlet of a *

while the left inlet receives a Boolean value from a toggle switch.
The usual sense of a mute button is that the channel is silent
when the mute is active, so first the toggle output is inverted.
Some solutions to zipper noise use line or line~ objects to in-
terpolate the slider values. Using line is efficient but somewhat
unsatisfactory since we are still interfacing a message to a sig-
nal and will hear clicks on each block boundary even though the
jumps are smaller. Better is to use line~ , but this can introduce
corners into the control signal if the slider moves several times
during a fade. A good way to obtain a smooth fade is to convert
messages to a signal with sig~ and then low pass filter it with lop~ .
A cutoff value of 1Hz will make a fade that smoothly adjusts over 1 second.

Panning

Pan is short for panorama, meaning a view in all directions. The purpose of a
pan control is to place a mono or point source within a listening panorama. It
should be distinguished from balance which positions a sound already containing
stereo information. The field of an audio panorama is called the image and
with plain old stereo we are limited to a theoretical image width of 180◦. In
practice a narrower width of 120◦ is used. Some software applications specify
the pan position in degrees, but this is fairly meaningless unless you know
precisely how the loudspeakers are arranged or whether the listener is using
headphones. Mixing a stereo image for anything other than movie theatres is
always a compromise to account for the unknown final listening arrangement.
In movie sound however, the specifications of theatre PA systems are reliable
enough to accurately predict the listeners experience.

Simple linear panner

inlet~ signal inlet control

sig~

*~ *~

sig~ 1

-~

outlet~ left outlet~ right

lop~ 1

fig 7.7: simple panner

In the simplest case a pan control provides for two
speakers, left and right. It requires that an increase
on one side has a corresponding decrease on the other.
In the center position the sound is distributed equally
to both loudspeakers. The pan patch in Fig. 7.7 shows
a signal inlet and control message inlet at the top
and two signal outlets at the bottom, one for the left
channel and one for the right. Each outlet is preceded
by a multiplier to set the level for that channel, so the
patch is essentially two level controls in one. As with our level control, zipper
noise is removed by converting control messages to a signal and then smoothing
them with a filter. The resulting control signal, which is in the range 0.0 to

74 Pure Data essentials

1.0, is fed to the left channel multiplier, while its complement (obtained by
subtracting it from 1.0) governs the right side. With a control signal of 0.5 both
sides are multiplied by 0.5. If the control signal moves to 0.75 then the opposing
side will be 0.25. When the control signal reaches 1.0 the complement will be
0.0, so one side of the stereo image will be completely silent.

Square root panner

inlet~ signal inlet control

sig~

*~ *~

outlet~ left outlet~ right

lop~ 1

sqrt~

sig~ 1

-~

sqrt~

fig 7.8: root law panner

The problem with simple linear panning is that when
a signal of amplitude 1.0 is divided in half and sent
to two loudspeakers, so each receives an amplitude
of 0.5, the result is quieter than sending an ampli-
tude of 1.0 to only one speaker. This doesn’t seem
intuitive to begin with, but remember loudness is a
consequence of sound power level, which is the square
of amplitude. Let’s say our amplitude of 1.0 repre-
sents a current of 10A. In one loudspeaker we get
a power of 102 = 100W. Now we send it to equally
amongst two speakers, each receiving a current of 5A. The power from each
speaker is therefore 52 = 25W and the sum of them both is only 50W. The real
loudness has halved! To remedy this we can modify the curve used to multiply
each channel, giving it a new taper. Taking the square root of the control signal
for one channel and the square root of the complement of the control signal
for the other, gives panning that follows an equal power law. This has a 3dB
amplitude increase in the center position.

Cosine panner

inlet~ signal inlet control

sig~

*~ *~

cos~

-~ 0.25

*~ 0.25

outlet~ left outlet~ right

lop~ 1

cos~

-~ 0.25

fig 7.9: cos-sin law pan-
ner

While the square root law panner gives a correct am-
plitude reduction for centre position it has a problem
of its own. The curve of

√
A is perpendicular to the x

axis as it approaches it, so when adjusting the panning
close to one side the image suddenly disappears com-
pletely from the other. An alternative taper follows the
sine-cosine law. This also gives a smaller amplitude re-
duction in the centre position, but it approaches the
edges of the image smoothly, at 45 degrees. The cosine
panner is not only better in this regard but slightly
cheaper in CPU cycles since it’s easier to compute a
cosine than a square root. It also mimics the place-
ment of the source on a circle around the listener and is nice for classical music
as an orchestra is generally arranged in a semicircle, however some engineers and
producers prefer the root law panner because it has a nicer response around the
center position and signals are rarely panned hard left or right.

Fig. 7.10 shows the taper of each panning law. You can see that the linear
method is 3dB lower than the others in the centre position and that the root
and cosine laws have different approaches at the edge of the image.

7.1 Channel strip 75

~0.7~

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

O
u
tp

u
t

Control

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

O
u
tp

u
t

Control

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

O
u
tp

u
t

Control

3dB

0.5Linear Square root Sin/Cos

x 1−x sqrt(1−x)sqrt(x) cos(x) sin(x)

Left Right Left Right Left Right

fig 7.10: Linear, root and sin/cos panning laws

* 0.0078745

ctlin

== 1

&&

spigot

sig~

lop~ 2

inlet midi-chan

inlet~ signal

*~ *~

outlet~ left outlet~ right

cos~

-~ 0.25

== 10

cos~

-~ 0.25

*~ 0.25

fig 7.11: MIDI panner

Combining the cosine panner patch with a
ctlin we now have a MIDI controlled pan
unit to add to the MIDI controlled fader.
Pan information is sent on controller num-
ber 10, with 64 representing the centre po-
sition. Once again an inlet is provided to
select the MIDI channel the patch responds
to. You may like to expand this idea into
a complete MIDI fader board by adding a
mute, bus outlet and auxiliary send/return
loop. It might be a good solution to com-
bine the level control, panning, mute and
routing into a single abstraction that takes
the desired MIDI channel and output bus as
creation arguments. Remember to use dol-
lar notation to create local variables if you
intend to override MIDI control with duplicate controls from GUI objects.

Crossfader

*~ *~

sig~ 1

-~

inlet~ signal1 inlet~ signal2 inlet~ xfade

outlet~

fig 7.12: crossfader

The opposite of a pan control, a reverse pan-
ner if you like, is a crossfader. When you
want to smoothly transfer between two sound
sources by mixing them to a common signal
path, the patch shown in Fig. 7.12 can be
used. There are three signal inlets, two of
them are signals to be mixed and one is a
control signal to set the ratio (of course a mes-
sage domain version would work equally well
with appropriate anti-zipper smoothing). It can be used in the final stage of a
reverb effects unit to set the wet/dry proportion, or in a DJ console to cross-
fade between two tunes. Just like the simple panner, the control signal is split
into two parts, a direct version and the complement with each modulating an
input signal. The output is the sum of both multipliers. This type is a linear

76 Pure Data essentials

crossfader, but in some situations crossfades may be better with constant power
fading done using sine or square root transfer functions.

Demultiplexer

*~

inlet routing

*~

sig~ sig~ sig~

0 0 0

1 0 0

0 1 0

0 0 1

*~

outlet~

unpack f f f

sel 0 1 2 3

lop~ 80 lop~ 80 lop~ 80

inlet~ s1 inlet~ s2 inlet~ s3

fig 7.13: demultiplex

A demultiplexer or signal source selector
is a multi-way switch that can choose be-
tween a number of signal sources. Fig. 7.13
is useful in synthesiser construction where
you want to select from a few different wave-
forms. In this design the choice is exclu-
sive so only one input channel can be sent
to the output at any time. A number at
the control inlet causes select to choose one
of four possible messages to send to unpack .
The first turns off all channels, the second
switches on only channel one and so forth.
The Boolean values appearing in the unpack

output are converted to signals and then
lowpassed at 80Hz to give a fast but click free transition.

SECTION 7.2

Audio file tools

Monophonic sampler

sig~

lop~ 2

*~

tabwrite~ $0-a1

tabplay~ $0-a1

inlet pinlet rinlet~

outlet~

inlet gain

table $0-a1 88200

fig 7.14: simple sampler

A useful object to have around is a simple sampler
that can grab a few seconds of audio input and play it
back. Audio arrives at the first inlet and is scaled by
a gain stage before being fed to tabwrite~ . It’s nice to
have a gain control so that you don’t have to mess
with the level of the signal you are recording else-
where. In Fig. 7.14 a table of 88200 samples is cre-
ated called $0-a1, so we have a couple of seconds
recording time. Obviously this can be changed in
the code or a control created to use the resize method. When it receives a
bang tabwrite~ starts recording from the beginning of the table. To play back
the recording we issue a bang to tabplay~ which connects directly to the outlet.
The use of dollar arguments means this patch can be abstracted and multiple
instances created, it’s not unusual to want a bunch of samplers when working
on a sound.

7.2 Audio file tools 77

adc~

sampler

record

play

gain

dac~

fig 7.15: us-
ing a sampler

Using the sampler is very easy. Create an instance and connect
it to a signal source via the first inlet. In Fig. 7.15 the left audio
input is taken from adc~ . A slider with a range 0.0 to 1.0 connects
to the gain inlet and two bang buttons are used to start recording
or playback. Sound files of up to 3min can be stored happily in
memory. Beyond this limit you need to use other objects for 32
bit machines because the sound quality will suffer due to pointer
inaccuracies. If you have files longer than 3 minutes then you may
want to think about using disk based storage and playback.

File recorder

When creating sounds for use in other applications, like multitracks or samplers
you could choose to record the output of Pd directly from the dac~ using your
favourite wave file editor or software like Timemachine. This could mean editing
long recordings later, so sometimes you want to just write fixed length files
directly from Pd.

done

start

noise~

writefile 1000 RENDER

throw~ audio

catch~ audio

10 written

fig 7.16: Using a file writer

In Fig. 7.16 we see a file writer in use, which I will
show you how to make in a moment. It catches
audio, perhaps from other patches, on a bus called
audio. It was created with two arguments, the
length of each file to record (in this case 1s) and
the name of an existing folder beneath the current
working directory in which to put them. Each time
you hit the start button a new file is written to
disk and then the done indicator tells you when it’s finished. A numerical suffix
is appended to each file, which you can see on the second outlet, in order to keep
track of how many files you’ve created. The internals of the file writer are shown

startstop

+ 1f 0

t b b b b

writesf~ 1

inlet

outlet done

inlet~ makefilename $2/soundfile%d.wavdel $1

outlet number writtenstop,
open $1

fig 7.17: Making a file writer

in Fig. 7.17. Audio comes into the first inlet and to the writesf~ object which
has an argument of 1, so writes a single channel (mono) file. There are three
commands that writesf~ needs, the name of a file to open for writing, a start
command, and a stop command. Each bang on the second inlet increments

78 Pure Data essentials

a counter and the value of this is appended to the current file name using
makefilename which can substitute numerical values into a string like the C printf
statement does. This string is then substituted after the open keyword in the
following message. As soon as this is done a start message is sent to writesf~

and a bang to the delay which waits for a period given by the first argument
before stopping writesf~ .

Loop player

inlet

soundfiler

openpanel

t boutlet~

read -resize $1 $2

pack s s

t a b

bang

spigot 1

inlet

sel 1

table $0-a

tabplay~ $0-a

symbol $0-a

fig 7.18: sample loop
player

A looping sample player is useful in many situations, to
create a texture from looped background samples, or to
provide a beat from a drum loop, especially if you need a
continuous sound to test some process with. In Fig. 7.18
we see a patch that should be created as an abstraction
so that many can be instantiated if required. It’s opera-
tion is unsophisticated, just playing a loop of a sound file
forever. When the abstraction receives a bang openpanel

is activated and provides a nice file dialogue for you to
choose a sound file. You should pick a Microsoft .wav
or Mac .aiff type, either stereo or mono will do but this
player patch will only give mono output. The name and
path of this file is passed through the trigger “any” outlet and packed as the
first part of a list along with a second part which is a symbol $0-a. The second
symbol is the name of our storage table, the place in memory where the contents
of the soundfile will be put once read. It has the prefix $- to give it local scope
so we can have many sample loop players in a patch. Now the elements of the
list will be substituted in $1 and $2 of the message read -resize $1 $2, which
forms a complete command to soundfiler telling it to read in a sound file and put
it in an array resizing the array as required. Once this operation is complete
soundfiler returns the number of bytes read, which in this case we ignore and
simply trigger a new bang message to start tabplay~ . Notice the argument is the
name of the array living in the table just above it. tabplay~ will now play once
through the file at its original sample rate, so there is no need to tune it. When
it has finished, the right outlet emits a bang. We take this bang, buffering it
through another trigger and apply it back to the tabplay~ inlet, which means it
plays the sound forever in a loop. A zero arriving at the second inlet allows you
to stop the loop playing.

SECTION 7.3

Events and sequencing

Now let’s look at a few concepts used for creating time, sequences and event
triggers.

Timebase

At the heart of many audio scenes or musical constructions is a timebase to
drive events. We’ve already seen how to construct a simple timebase from a

7.3 Events and sequencing 79

metronome and counter. A more useful timebase is given in Fig. 7.19 that allows
you to specify the tempo as beats per minute (BPM) and to add a “swing”1 to
the beat. Notice first that start and stop control via the first inlet also resets

f 0 + 1

t b b

metro 125

outlet bangs outlet time

inlet bpm

swap 60000

/

inlet beats

/ 4

t b f

del

t b b

inlet swing percent

/ 100

+ 1

t f f

*

t b f

f $3

loadbang

f $2f $1

t b b b

0

inlet control

sel 0

fig 7.19: A more useful musical timebase abstraction with BPM and swing

the counter when the timebase is stopped. Bangs from metro are duplicated with
a delay object so we can position every other beat relative to the main rhythm.
To convert beats per minute to a period in milliseconds it is divided by 60000
and multiplied by the number of beats per bar. The last parameter provides
swing as a percentage which is added to the delay prior to incrementing the
counter.

Select sequencer

s time
r time

select 0 1 2 3 4 5 6 7 8

mod 8

4

timebase 60 4 0

sel 1024

938

r time

fig 7.20: Select based triggering

The simplest way to obtain regular patterns
for repetitive sounds is by using mod to wrap
the incoming time to a small range, say 8
beats, and then use select to trigger events
within this range. You do not have to fill out
all the select values, so for example, to pro-
duce a single trigger at time = 1024 you can
connect one select matching this number. A
good practice is to broadcast a global time
message so that other patches can pick up a common reference. In Fig. 7.20
the output from the timebase abstraction goes to a send . To create a sequencer
where you can manually set the time at which an event is triggered, use a com-

1Swing is where every other beat is moved slightly in time giving a different feel to the
rhythm.

80 Pure Data essentials

bination of == and select with a number box attached to the cold inlet of ==

and the current time going to the left inlet.

Partitioning time

s time

timebase 60 4 0

moses 128

- 128

80

208

r time

moses 256

16

208

mod 64

select 0 16 32 48

127

fig 7.21: Bar offset by
partitioning time

For long musical compositions, interactive installations
or generating event structures for a long game or an-
imation you may want to offset timing sequences by
a large number but keep the relative timings within a
section. This is how bars and measures work in a tradi-
tional sequencer. In Fig. 7.21 moses is used to split the
global time into smaller frames of reference. A chain
of moses objects splits off numbers that fall within a
range. You can see that the last value present on the
left outlet of the first split was 127. Numbers of 128
or more are passing through the right outlet and into
the second moses which partitions values between 128
and 255. We subtract the base value of 128 from this
stream to reposition it, as if it were a sequence start-
ing at zero. This can be further processed, such as
wrapping it into the range 0 to 64 to create 2 bars of 64 beats in the range 128
to 256. In Fig. 7.21 you see the timebase at 208, which is in the second bar of
the partitioned timeframe.

Dividing time

s time

timebase 60 4 0

r time

/ 2

change change

/ 4

trigger f f

362 181

725

intint

fig 7.22: Divid-
ing time into different
rates

With time expressed as a number you can perform arith-
metic on it to obtain different rates. Be aware that al-
though the value of numerical time changes with a differ-
ent scale it still updates at the rate set by the timebase.
Since for musical purposes you want to express time in
whole beats and bars a problem is presented. Dividing
time by two and rounding it to an integer means two mes-
sages will now be sent with the same value. To get around
this problem change is used so that redundant messages are
eliminated. Using int means values are rounded to the
time floor, so if rhythms constructed this way seem one
beat out of alignment you can try using a “closest integer”
rounding explained earlier. Sometimes rounding time is not what you want as
shown in the next example.

Event synchronised LFO

An application and pitfall of timebase division is shown in Fig. 7.23 where low
frequency control signals are derived from the timebase. Notice how the sine
wave is not interpolated, so you get two or four consecutive equal values when
using a divided timebase. This makes the LFO jumpy so to avoid it we scale
the raw time values before the trig operation using a higher mod and / . It

7.3 Events and sequencing 81

s time

timebase 60 4 0

r time

/ 2

change change

/ 4

0

intint

s quartimes halftime

trigger float float

r halftime r quartime

mod 16

/ 16

* 6.282

sin

tabwrite a tabwrite b

r time r timer lfo1 r lfo2

s lfo1

mod 16

/ 16

* 6.282

s lfo2

ba

r time

tabwrite c

c

* 6.282

r time

sinsin

mod 64

/ 64

s lfo3

r lfo3

fig 7.23: Synchronous message LFOs

illustrates why you should often use a timebase that is a large multiple (say 64
times) of the real event rate you want. You might use this to create interesting
polyrhythms or elaborate slow moving control signals for wind, rain or spinning
objects.

List sequencer

An alternative to an absolute timebase is using lists and delays to make a relative
time sequencer. Events are stored in a list, which we define to have a particular
meaning to a sequencer that will interpret it. In this case the list is read in
pairs, an event type and a time offset from the last event. So, a list like {1 0

2 200 1 400 } describes three events and two event types. Event 1 occurs at
time = 0 and then at time = 200 event 2 occurs, followed by event 1 again at
time = 200 + 400 = 600. Times are in milliseconds and event types usually
correspond to an object name or a MIDI note number. The patch in Fig. 7.24
is hard to follow, so I will describe it in detail. The sequence list arrives at the
first inlet of list split 2 where it is chopped at the second element. The first two
elements pass to the unpack where they are separated and processed, while the
remainder of the list passes out of the second outlet of list split 2 and into the
right inlet of list append . Returning to unpack , our first half of the current pair
which identifies a float event type is sent to the cold inlet of a float where it
waits, while the second part which represents a time delay is passed to delay .
After a delay corresponding to this second value delay emits a bang message
which flushes out the value stored in float for output. Finally, list append is

82 Pure Data essentials

del

list append

unpack f f

list split 2

f

t b b

s synth

vline~

*~

mtof

*~

t f b

0, 1 1 0, 0 400 1

phasor~

*~ 2

-~ 1

vcf~ 1 1

+~ 100

*~ 600

r synth

dac~

*~ 0.35

61 0 60 500 59 500

fig 7.24: An asynchronous list sequencer

banged so the remainder of the list is passed back to list split 2 and the whole
process repeats, chomping 2 elements off each time until the list is empty. To
the right of Fig. 7.24 is a simple monophonic music synthesiser used to test the
sequencer. It converts MIDI note numbers to Hertz with mtof and provides
a filtered sawtooth wave with a 400ms curved decay envelope. To scale the
sequence delay times, and thus change the tempo without rewriting the entire
list, you can make each time offset be a scaling factor for the delay which is
then multiplied by some other fraction. List sequencers of this type behave
asynchronously, so don’t need a timebase.

Textfile control

Eventually lists stored in message boxes become unwieldy for large data sets
and it’s time to move to secondary storage with textfiles. The textfile object
provides an easy way to write and read plain text files. These can have any
format you like, but a general method is to use a comma or linebreak delimited
structure to store events or program data. It is somewhat beyond this textbook
to describe the many ways you can use this object, so I will present only one
example of how to implement a text file based MIDI sequencer. A combination
of textfile and route can provide complex score control for music or games. If
you need even larger data sets with rapid access a SQL object is available in
pd-extended which can interface to a database.

Starting at the top left corner of Fig. 7.25 you can see a monophonic synthe-
siser used to test the patch. Replace this with a MIDI note out function if you
like. The remainder of the patch consists of two sections, one to store and write
the sequence and one to read and play it back. Recording commences when
the start-record button is pressed. This causes a clear message to be sent
to textfile , the list accumulator is cleared and the timer object reset. When a
note is received by notein and then reduced to just its note-on value by stripnote

it passes to the trigger unit below which dispatches two bangs to timer . The
result of this is for timer to output the time since the last bang it received, then

7.4 Effects 83

write

list append

t l

list prepend

textfile

clear

timer

pack f f

t f b b

start-record

t b b b

t b b

del

list append unpack f f

list split 2

f

t b b

s synth

r synth

pd synth

s synth textfile

load-playback

write ./sq.txt cr

read ./sq.txt

rewind

t b b b

notein

stripnote

list prepend set

fig 7.25: A MIDI sequencer that uses textfiles to store data

restart from zero. This time value, along with the current MIDI note number,
is packed by pack into a pair and appended to the list accumulator. When you
are done playing, hit the write button to flush the list into textfile and write it
to a file called sq.txt in the current working directory. Moving to the load and
replay side of things, banging the load-replay button reads in the textfile and
issues a rewind message setting textfile to the start of the sequence. It then
receives a bang which squirts the whole list into a list sequencer like the one we
just looked at.

SECTION 7.4

Effects

For the last part of this chapter I am going to introduce simple effects.
Chorus and reverb are used to add depth and space to a sound. They are
particularly useful in music making, but also have utility in game sound effects
to thicken up weaker sources. Always use them sparingly and be aware that
it is probably better to make use of effects available in your external mixer, as
plugins, or as part of the game audio engine.

Stereo chorus/flanger effect

The effect of chorus is to produce a multitude of sources by doubling up many
copies of the same sound. To do this we use a several delays and position them
slightly apart. The aim is to deliberately cause beating and swirling as the
copies move in and out of phase with one another. In Fig. 7.26 an input signal
at the first inlet is split three ways. An attenuated copy is fed directly to the
right stereo outlet while two other copies are fed to separate delay lines. In the
centre you see two variable delay taps, vd~ , which are summed.

84 Pure Data essentials

delwrite~ $0-a1 100

delwrite~ $0-a2 100

vd~ $0-a2vd~ $0-a1

* 2

*~

+~

*~

+~

+ 1

* 5

s~ $0-d

r~ $0-d

*~ 0.3

*~ 1

r~ $0-fb

s~ $0-fb

*~

+~

* 0.4

osc~osc~

inlet~ inlet fb

clip -1 1

inlet rate inlet depth

outlet~ l outlet~ r

fig 7.26: A chorus type effect

start

pd chorus-flanger

dac~

feedback

pd sample_loop_player

rate

depth

fig 7.27: Testing the
chorus

A small part, scaled by the feedback value on the sec-
ond inlet, is sent back to be mixed in with the input
signal, while another copy is sent to the left stereo out-
let. So there is a dry copy of the signal on one side
of the stereo image and two time shifted copies on the
other. By slowly varying the delay times with a couple
of signal rate LFOs a swirling chorus effect is achieved.
The low frequency oscillators are always 1Hz apart and
vary between 1Hz and 5Hz. It is necessary to limit the
feedback control to be sure the effect cannot become
unstable. Notice that feedback can be applied in positive or negative phase to
create a notching effect (phaser/flanger) and a reinforcing effect (chorus). Test-
ing out the effect is best with a sample loop player. Try loading a few drum
loops or music loop clips.

Simple reverberation

A reverb simulates dense reflections as a sound bounces around inside some
space. There are several ways of achieving this effect, such as convolving a sound
with the impulse response of a room or using allpass filters to do a similar thing.
In Fig. 7.28 you can see a design for a recirculating reverb type that uses only
delay lines. There are four delays which mutually feed back into one another,
so once a signal is introduced into the patch it will circulate through a complex
path. So that reinforcement doesn’t make the signal level keep growing some
feedback paths are negative. The recirculating design is known as a Schroeder
reverb (this example by Claude Heiland-Allen) and mimics four walls of a room.
As you can see the number of feedback paths gets hard to patch if we move to
6 walls (with floor and ceiling) or to more complex room shapes. Reverb design
is a fine art. Choosing the exact feedback and delay values is not easy. If they
are wrong then a feedback path may exist for certain frequencies producing an
unstable effect. This can be hard to detect in practice and complex to predict in

7.4 Effects 85

+~ +~

+~ +~ -~ -~

+~ +~ -~ -~

delwrite~ D 1000

delwrite~ C 1000

delwrite~ B 1000

delwrite~ A 1000

*~ 0.4

*~ 0.37

*~ 0.333

*~ 0.3

delread~ A 101

delread~ B 143

delread~ C 165

delread~ D 177

inlet~

outlet~ routlet~ l

fig 7.28: A recirculating Schroeder reverb effect

theory. An apparently well designed reverb can mysteriously explode after many
seconds or even minutes so a common design safety measure is to attenuate the
feedback paths as the reverb decays away. What defines the reverb time is the
point at which the reverb is has fallen to −60dB of the first reflection intensity.
A good design should not be too coloured, which means feedback paths must
not be too short leading to a pitched effect. The minimum delay time should
be at least a quarter of the reverberation time and the lengths of delays should
be prime, or collectively co-prime 2. The density of the reverb is important too.
Too little and you will hear individual echos, too much and the effect will become
muddy and noisy. Schroeder suggests 1000 echoes per second for a reasonable
reverb effect. If you look in the extra directory that comes with Pd there are
three nice reverb abstractions rev1~ , rev2~ and rev3~ by Miller Puckette

Exercises

Exercise 1

Create any one of the following effects.

• Guitar tremolo effect
• Multi-stage phaser
• Multi-tap tempo-sync delay
• A high quality vocal reverb

Exercise 2

Create a sequencer that provides any two of,

2A set of integers with no common factors are said to be collectively co-prime.

86 Pure Data essentials

• Hierarchical structure
• Microtonal tuning scales
• Polyrhythmic capabilities
• A way to load and save your compositions

Exercise 3

Design and implement a mixing desk with at least three of,

• MIDI or OSC parameter automation
• Switchable fader and pan laws
• Surround sound panning (eg 5.1, quadraphonic)
• Effect send and return bus
• Accurate signal level monitoring
• Group buses and mute groups
• Scene store and recall

Exercise 4

Essay: Research datastructures in Pd. How can graphical representations help
composition? What are the limitations of graphics in Pd? Generally, what are
the challenges for expressing music and sound signals visually?

References

Zoelzer, U. (2008) “Digital Audio Signal Processing” (Wiley) ISBN-13: 978-
0470997857

Penttinen, H., Tikander, M. (2001) Spank the reverb: In “Reverb Algorithms,
Course report for Audio Signal Processing S-89.128”

Gardner, W. G. (1998) “Reverberation Algorithms” in M. Kahrs and K. Bran-
denburg (eds.), Applications of Digital Signal Processing to Audio and Acous-
tics. Kluwer, pp. 85-131.

Schroeder, M. R. (1962) “Natural Sounding Artificial Reverberation” J. Audio
Eng. Soc., vol. 10, no. 3, pp. 219-224.

Case, A. (2007) “Sound FX: Unlocking the Creative Potential of Recording
Studio Effects” (Focal) ISBN-13: 978-0240520322

Izhaki, R. (2007) “Mixing Audio: Concepts, Practices and Tools” (Focal) ISBN-
13: 978-0240520681

Online resources

http://puredata.info/ is the site of the main Pure Data portal.

http://crca.ucsd.edu/ is the current home of official Pure Data documentation
by Miller Puckette.

7.4 Effects 87

Beau Sievers “The Amateur Gentleman’s Introduction to Music Synthesis”
An introductory online resource geared toward synth building in Pure Data.
http://beausievers.com/synth/synthbasics/

http://www.musicdsp.org/ is the home of the music DSP list archive, with cat-
egorised source code and comments.

http://www.dafx.de/ is home of the DAFx (Digital Audio Effects) project con-
taining many resources.

Acknowledgements

I would like to thank Frank Barknecht, Steffen Juul, Marius Schebella, Joan
Hiscock, Philippe-Aubert Gauthier, Charles Henry, Cyrille Henry and Thomas
Grill for their valuable help in preparing this part.

