Introduction to CVE, CWE, and the Top 25

Steve Christey Coley

October 29, 2015

@sushidude

coley@mitre.org

© 2015 The MITRE Corporation. All rights reserved.

Who Am I?

- MITRE employee for 25+ years (so far)
- Started in artificial intelligence
- Like many others fell into computer security
- Realized it's a great fit
 - Always changing
 - Always challenging
 - Many opportunities to (try to) do the right thing
- "MITRE partners with the government applying systems engineering and advanced technology to address issues of critical national importance."
 - Values: Commitment to the Public Interest, People in Partnership, Excellence that Counts
 - Top STEM Company for Women, March 2015
 - Top Employer (Workforce Diversity for Engineering & IT Professionals Magazine)
 - Top STEM Employer (Hispanic Network Magazine)
- http://www.mitre.org/about/mission-and-values

There is always a well-known solution to every human problem – neat, plausible, and wrong.

H.L. Mencken

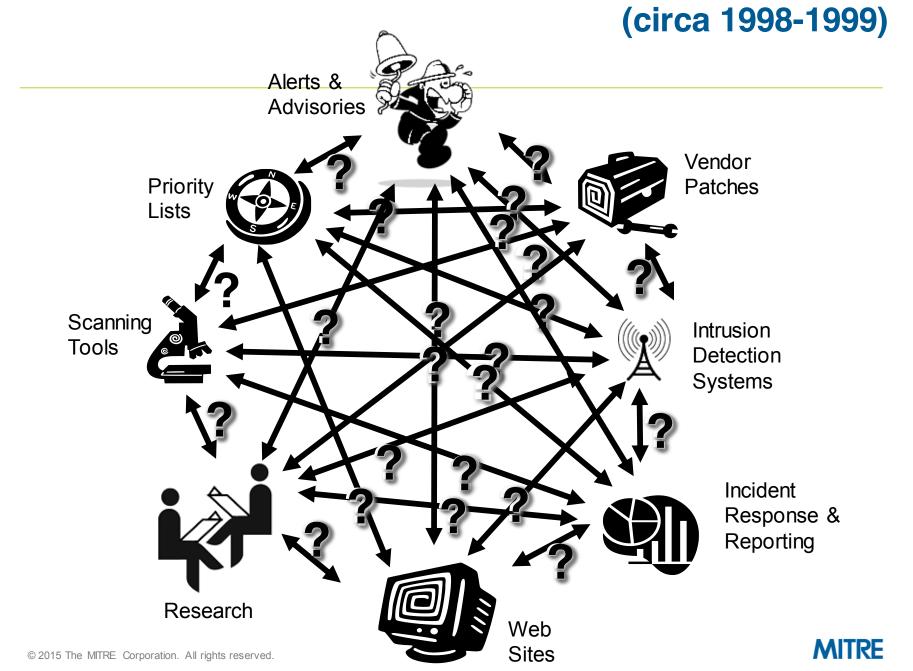
Sometimes the simple life Ain't so simple.

1980's Van Halen (the correct lineup)

Ye Goode Olde Dayes of 1999: Historical Context

- Melissa worm
- The year before Y2K
- Bill Clinton impeached
- Euro currency established
- Wayne Gretzky retires
- SpongeBob Squarepants debuts
- Chandler Riggs (Carl from The Walking Dead) born
- Star Wars: The Phantom Menace introduces the world to Jar Jar Binks

WIIKH



4

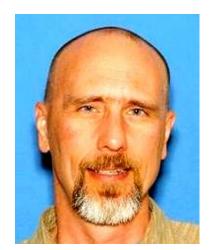
Welcome to 1998

- Vulnerability databases were mostly private
 - "We'll show you our database if you show us your NDA"
- Bugtraq was a low-traffic list
- Full-disclosure and OSVDB didn't exist
- CERT advisories said very little
- Exploits were shared privately
- Attacks were rampant for months/years
- Vendors didn't fix things for months/years
- Vulnerability scanning industry still in infancy
- WWW wasn't ubiquitous
- Maybe 10 unique vulnerability types
- "Smashing the Stack" was only 2 years old
- Most reported vulnerabilities were in servers

Vulnerability Information Sharing

6

CVE Began with a Challenge at MITRE for 2 of our Technical Staff...


(Vulnerability Management: Circa 1998-1999)

How to pick a vulnerability scanning tool?

- Which one finds more?

Are we safe against vulnerabilities listed in CERT advisories?

 How to match CERT names of vulnerabilities with scanning tool results?

7

MITRE

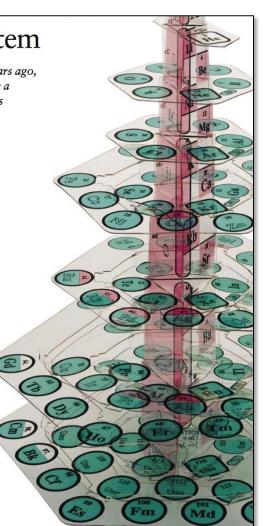
Aha moment on an Exercise Bike in MITRE's Bedford Fitness Center in 1998...

Periodic System

From its origins some 200 years ago, the periodic table has become a vital tool for modern chemists

by Eric R. Scerri

The periodic table of the elements is one of the most powerful icons in science: a single document that consolidates much of our knowledge of chemistry. A version hangs on the wall of nearly very chemical laboratory and lecture hall in the world. Indeed, nothing quite like it exists in the other disciplines of science.

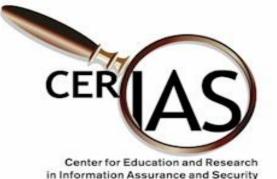

The story of the periodic system for classifying the elements can be traced back over 200 years. Throughout its long history, the periodic table has been disputed, altered and improved as science has progressed and as new elements have been discovered [see "Making New Elements," by Peter Armbruster and Fritz Peter Hessberger, on page 72].

But despite the dramatic changes that have taken place in science over the past century--namely, the development of the theories of relativity and quantum mechanics--there has been no revolution in the basic nature of the periodic system. In some instances, new findings initially appeared to call into question the theoretical foundations of the periodic table, but each time scientists eventually managed to incorporate the results while preserving the table's fundametal structure. Remarkably, the periodic table is thus notable both for its historical⁻coots and for its modern relevance.

The term "periodic" reflects the fact that the elements show patterns in their chemical properties in certain regular intervals. Were it not for the simplification provided by this chart, students of chemistry would need to learn the properties of all 112 known elements. Fortunately, the periodic table allows chemists to function by mastering the properties of a handful of typical elements.

78 SCIENTIFIC AMERICAN September 1998

Copyright 1998 Scientific American, Inc.


September 1998 Issue of Scientific American article on the Periodic System:

List of Elements predated the Periodic Table by 100's of Years

8

2nd Workshop on Research with Security Vulnerability Databases, Purdue University

MITRE

Towards a Common Enumeration of Vulnerabilities

David E. Mann, Steven M. Christey The MITRE Corporation 202 Burlington Rd., Bedford MA 01730 {damann, coley}@mitre.org

January 8, 1999

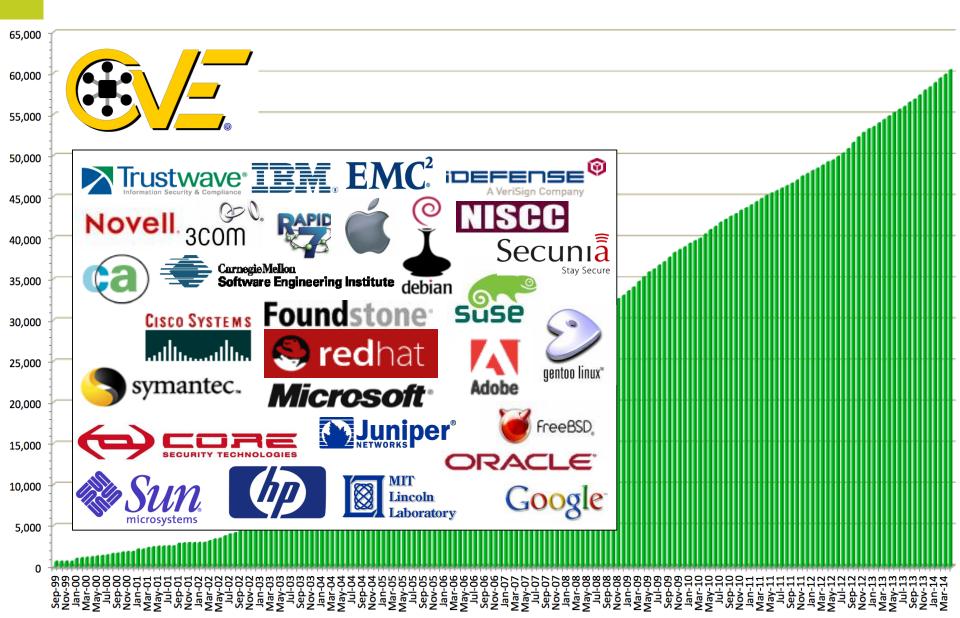
Abstract

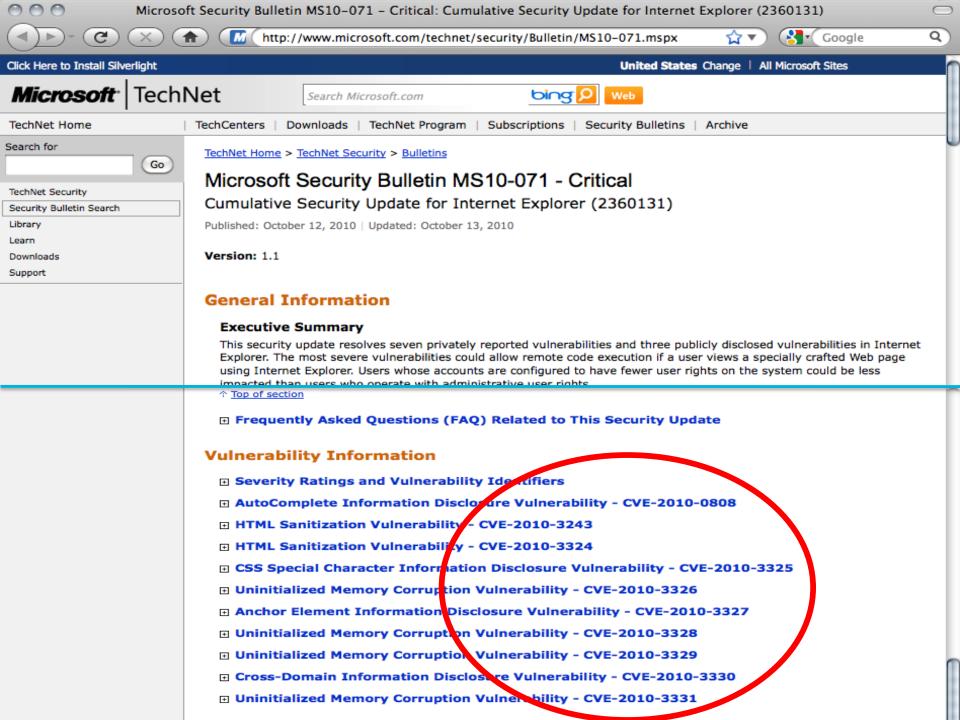
In this paper, we discuss the use of multiple vulnerability databases in our oper enterprise security environment and we consider some of the roadblocks we see achieving interoperability between them. We introduce the concept of a Comm Vulnerability Enumeration (CVE) as a mechanism that we believe will help to easier data sharing. We consider some historical examples of the development taxonomies in other fields and relate them to current efforts in representing and vulnerability information. We present a simplified representation of a "vulneral discuss how we anticipate using it to mitigate the problem of interoperability. V describe some of the practical issues that may be involved in the development a a CVE.

The Development of a Common Vulnerability Enumeration Vulnerabilities and Exposures List

Steven M. Christey David W. Baker William H. Hill David E. Mann

The MITRE Corporation


CVE Editorial Board MITRE 🏶 Sun BIND VIE NFR CITADEL NIS Microsoft 6 CIAC STAT INTERNET redhat SECURITY CISCO SYSTEMS symantec. SYSTEMS SILICON nCırcle GENERAL DYNAMICS UCDAVIS Computer Associates GUARDEDNET Advanced Information Systems


CVE Entries: Dictionary, not a Database

🐸 CVE - CVE-2008-2027 (ur					_	
<u>File E</u> dit ⊻iew History <u>I</u>	<u>3</u> ookmarks <u>T</u> ools <u>H</u> e	lp				
<= • 🕪 • 💽 😣	🚮 😻 http://cve.r	nitre.org/cgi-bin/cvename.cg	ji?name=CVE-2008-2027	▼ ▶	G - Google	Q
TT :: View Forum - Telem 🔽	Bike Forums - Classic	My MII 🧿 DAVE'S E	BACKCOUN 🧿 BIKE GEOMETRY F	P 🧿 BIKES 🏹 MyeBaySum	nmary 📄 Cyclofiend.com: Curre	»
	CVE	LIST COM	MPATIBLE PRODUCTS N	IEWS — MAY 1, 2008	SEARCH	
	1) Elat I	dentifier			abilities and Exposure ormation Security Vulnerability Name	
HOME > CVE > CVE			2) Short Des	cription	TOTAL CVEs: <u>3051</u>	9
About CVE Terminology Documents FAQs CVE List 3) External References	Web for IIS, whe	Severity Rating • Jappings Inerability in WebID/IIS n accessed via certair arbitrary web sites an	ional Vulnerability Database (N Fix Information • Vulner ble So SWebAgentIF.dll in RSA Auther n browsers such as Mozilla Fire nd conduct phishing attacks via	oftware versions • SCAP ntication Agent 5.3.0.258 fo fox, allows remote attackers	Data Updates & RSS Feeds Reference Key/Maps Data Sources Versions Search Tips Editor's Commentary Obtain a CVE Identifier	3
Products NVD for CVE Fix Information More		is are provided for the he list ist intended	e convenience of the reader to to be complete.	help distinguish between	Editorial Policies About CVE Identifiers	
News & Events Calendar Free Newsletter Community CVE Editorial Board	• <u>URL:http://w</u>	ww.securityfocus.com/	ross-domain redirect on RSA A archive/1/archive/1/491237/10 vulnerability_PR07-43.php		ITEMS OF INTERES	T
Sponsor	Candidate	This CVE Identifier	r has "Candidate" status and m	ust be reviewed and accept	ted	•
Done	·				·	

CVE 1999 to 2014

APPLE-SA-2010-08-11-1 iOS 4.0.2 Update for iPhone and iPod touch

Subject: APPLE-SA-2010-08-11-1 iOS 4.0.2 Update for iPhone and iPod touch

From: Apple Product Security <email@hidden> Date: Wed, 11 Aug 2010 12:19:43 -0700 Delivered-to: email@hidden Delivered-to: email@hidden

----BEGIN PGP SIGNED MESSAGE-----Hash: SHA1

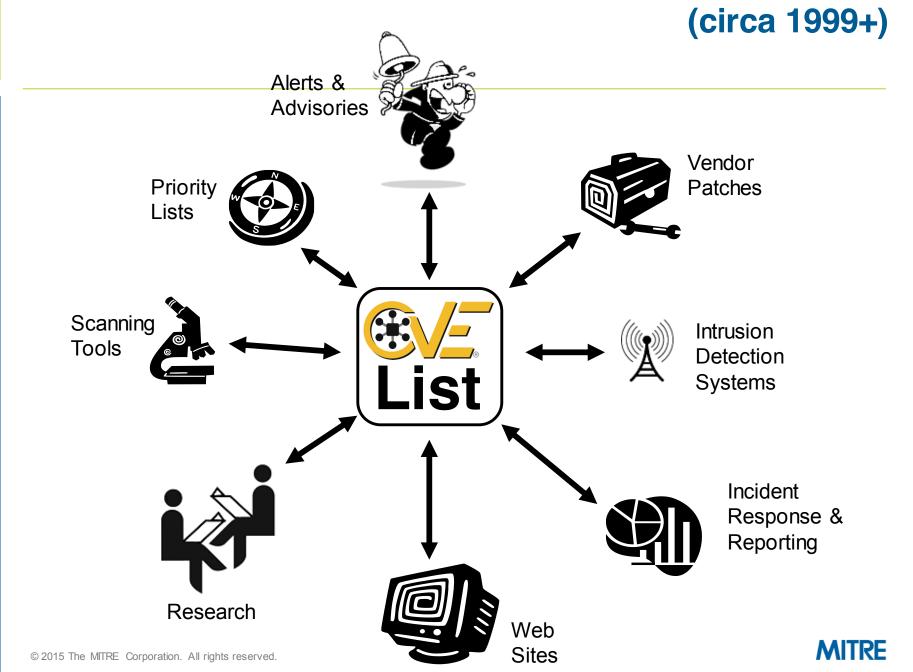
APPLE-SA-2010-08-11-1 iOS 4.0.2 Update for iPhone and iPod touch

iOS 4.0.2 Update for iPhone and iPod touch is now available and addresses the following:

reeType

CVE-ID: CVE-2010-1797 Heilable for: iOS 2.0 through 4.0.1 for iPhone 3G and later, iOS 2.1 through 4.0 for iPod touch (2nd generation) and later Impact: Viewing a PDF document with maliciously crafted embedded fonts may allow arbitrary code execution Description: A stack buffer overflow exists in FreeType's handling of CFE opender. Wiewing a PDF document with maliciously grafted

000		rhn.redhat.com Red Hat Support		
		http://rhn.redhat.com/errata/RHSA-2010-0723.html	😭 🔻 🤇 🕄 🕻 Google	٩
🤍 re	e d hat.			N
Errata	Log In About R	HN		U
🚱 I	mportant: kei	rnel security and bug fix update		
	Advisory:	RHSA-2010:0723-1		
	Туре:	Security Advisory		
	Severity:	Important		
	Issued on:	2010-09-29		
	Last updated on:	2010-09-29		
	Affected Products:	Red Hat Enterprise Linux (v. 5 server) Red Hat Enterprise Linux Desktop (v. 5 client)		
	01/41	com.redhat.rhsa-20100723.xml		
C	/Es (cve.mitre.org):	CVE-2010-1083 CVE-2010-2492 CVE-2010-2798 CVE-2010-2938 CVE-2010-2942 CVE-2010-2943 CVE-2010-3015		


000				Mo	zilla Firefo	c	C
• • • • • • • • • • • • • • • • • • •		http://	/www.oracle	.com/technet	work/topics,	security/	cpuoct2010–175626.htr 🏫 🔻 🤇 🚱 🕻 Google 🔍 🍳
ORACLE			(<u>Sign In/Regist</u> e	er for Account Help) United States	- ⊂ Commu	Sun Quick Links -
Products and Services	Downloads	Store	Support	Education	Partners	About	Oracle Technology Network 💌
Oracle Technology Network	Topics > Securi	ty					
Embedded							
BI & Data Warehousing	Orac	le Critic	al Patch U	pdate Advis	ory - Octo	ber 2010	
.NET	Desc	ription					
Linux	A Criti	A Critical Patch Update is a collection of patches for multiple security vulnerabilities. It also includes non-security fixes that are required (because of interdependencies) by those security patches. Critical Patch Updates are cumulative, except as noted below, but each advisory					
РНР	descri	bes only the	security fixes		previous Critica	al Patch Upd	date. Thus, prior Critical Patch Update Advisories should be
				0	- Detail		h Madala

			Package	Remote		CVSS VEF	RSION 2.0 RIS	6K (see <u>R</u>	isk Matrix (Definitions	<u>5)</u>	Last Affected Patch set			
OVEN	Com	ponent	Protocol	and/or Privilege Required	Exploit without Auth.?	Base Score	Access Vector	Access Complexity	Authen- tication	Confiden- tiality	Integrity	Avail- ability	(per Supported Release)	Notes	
CVE-2010-2390 (Oracle Enterprise Manager Grid Control)	мс	onsole	нттр	None	Yes	7.5	Network	Low	None	Partial+	Partial+	Partial+	10.1.0.5, 10.2.0.3	See Note 1	
CVE-2010-2419		Virtual chine	Oracle Net	Create Session	No	6.5	Network	Low	Single	Partial+	Partial+	Partial+	10.1.0.5, 10.2.0.4, 11.1.0.7, 11.2.0.1		
CVE-2010-1321	Chang Ca		Oracle Net	Execute on DBMS_CDC_ PUBLISH	No	5.5	Network	Low	Single	Partial+	Partial+	None	-	See Note 2	
CVE-2010-2412	0	Р	Oracle Net	Create Session	No	5.5	Network	Low	Single	Partial+	Partial+	None	11.1.0.7		
CVE-2010-2415	Chang Caj		Oracle Net	Execute on DBMS_CDC_ PUBLISH	No	4.9	Network	Medium	Single	Partial+	Partial+	None	10.1.0.5, 10.2.0.4, 11.1.0.7, 11.2.0.1		
CVE-2010-2411	Job	ueue	Oracle Net	Execute on SYS.DBMS_ IJOB	No	4.6	Network	High	Single	Partial+	Partial+	Partial+	-	See Note 2	
CVE-2010-2407		DK	нттр	None	Yes	4.3	Network	Medium	None	None	Partial	None	10.1.0.5, 10.2.0.4, 11.1.0.7		
CVE-2010-2391	Crite I	RDBMS	Oracle Net	Create Session	No	3.6	Network	High	Single	Partial	Partial	None	10.1.0.5, 10.2.0.3		
CVE-2010-2389 (Oracle Fusion Middleware)	P	eri	Oracle Net	Local Logon	No	1.0	Local	High	Single	None	Partial+	None	-	See Note 2	

Oracle Database Server Risk Matrix

	VD - Detail +				R				
S 🔶 🛞 web.nvd.nis	t.gov/view/vuln/detail?vulnId=CVE-2014	-0160	⊂ C	S ▼ Google	Q ☆ 自 ↓ ☆ Ξ				
1 https://sfile-mcl	🕽 Discover Digital L 🛛 🔽 Google Analytic	s owe http://www.omg O https://github.c	o 🗍 https://mbridge	1 🗍 msmdev1.mitre.o	. Sophos SPAM Filter				
Sponsored by DHS National Cyber Se	ecurity Division/US-CERT	NUST National Institution							
	Vulnerability L	Database							
Automating vulnerab	Checklists 800-53/800-53	Surement, and compliance checking A Product Dictionary	Impact Metrics	Data Feeds	Statistics				
Home SCAP	SCAP Validated Tools	SCAP Events	About		or Comments				
Mission and Overview		National Cyber	Awareness Syste						
NVD is the U.S.			Awareness Syst						
	Vulnerability Summary for C	VE-2014-0160							
standards based vulnerability	Original release date: 04/07/2014								
management data. This	Last revised: 05/23/2014	References to Advisories, Solutions, an							
data enables automation of vulnerability	Source: US-CERT/NIST	By selecting these links, you will be leaving NIST webspace. A inferences should be drawn on account of other sites being re	ferenced, or not, from this page.	There may be other web sites that a	are more appropriate for your purpose. NIST does				
management, security	Overview	not necessarily endorse the views expressed, or concur with t these sites. Please address comments about this page to nvd		. Further, NIST does not endorse and	y commercial products that may be mentioned on				
measurement, and compliance (e.g. FISMA).	The (1) TLS and (2) DTLS implementation	External Source: SECTRACK							
Resource Status	information from process memory via cr bug.	Name: 1030077							
NVD contains:	-	Hyperlink: http://www.securitytracker.com/id/1030077							
62403 CVE Vulnerabilities	Impact	External Source: FULLDISC Name: 20140411 MRI Rubies may contain statically linked, v	ulperable OpenSSI						
231 Checklists	CVSS Severity (version 2.0):	Hyperlink: http://seclists.org/fulldisclosure/2014/Apr/173							
248 US-CERT Alerts	CVSS v2 Base Score: 5.0 (MEDIUM) (External Source: HP							
2867 US-CERT Vuln Notes	Impact Subscore: 2.9	Name: HPSBMU02995							
10286 OVAL Queries 90649 CPE Names	Exploitability Subscore: 10.0	Hyperlink: http://marc.info/?l=bugtraq&m=139722163017074&w=2							
		External Source: MISC Name: https://www.cert.fi/en/reports/2014/vulnerability788210.html Hyperlink: https://www.cert.fi/en/reports/2014/vulnerability788210.html							
Last updated: 5/23/2014 5:36:54 PM	CVSS Version 2 Metrics:								
CVE Publication rate: 19.4	Access Vector: Network exploitable		700210.Hdm						
	Access Complexity: Low	External Source: CONFIRM Name: http://www.oracle.com/technetwork/topics/security/or	pensslheartbleedcve-2014-0160-	2188454.html					
Email List	Authentication: Not required to explo	Hyperlink: http://www.oracle.com/technetwork/topics/secur							
NVD provides four	Impact Type: Allows unauthorized dis	External Source: CONFIRM							
mailing lists to the public.	CVSS V2 scoring evaluates the impact of	Name: http://www-01.ibm.com/support/docview.wss?uid=sw							
For information and subscription instructions	into account the nature of the data that	Hyperlink: http://www-01.ibm.com/support/docview.wss?uie	<u>1=swg216/0161</u>						
please visit <u>NVD Mailing</u>	memory on the targeted host, a success cryptographic keys and passwords. The	External Source: REDHAT Name: RHSA-2014:0378							
<u>Lists</u>	and functions of that system.	Hyperlink: http://rhn.redhat.com/errata/RHSA-2014-0378.h	tml						
Workload Index	References to Advisories,	External Source: CONFIRM							
Vulnerability Workload	By selecting these links, you will be leav	Name: http://www.f-secure.com/en/web/labs_global/fsc-201							
Index: 8.19	inferences should be drawn on account of	Hyperlink: http://www.f-secure.com/en/web/labs_global/fsc	- <u>2014-1</u>						
About Us	not necessarily endorse the views expre these sites. Please address comments a	External Source: CONFIRM							
NVD is a product of the	these sites. Fieuse address comments a	Name: http://www.splunk.com/view/SP-CAAAMB3 Hyperlink: http://www.splunk.com/view/SP-CAAAMB3							
INVE IS a product of the		http://www.spiunk.com/view/sr-CAAAMB3							

Vulnerability Information Sharing

17

Content Decisions

Explicit guidelines for content of CVE entries

- Ensure and publicize consistency within CVE
- Provide "lessons learned" for researchers
- Document differences between vulnerability "views"

Two basic types

- Inclusion: What goes into CVE? What doesn't, and why?
- Level of Abstraction: One or many entries for similar issues?
- Format: How are CVE entries formatted?

Difficult to document

- "[It's] like trying to grasp wet corn starch" (Board member)

Incomplete information is the bane of consistency - and content decisions!

Why CVE-2001-0019 Could Identify 1, 2, or 6 Vulnerabilities

- 0 "Shellshock" anyone?
- 0 3 different source code scenarios
- 0 Without actual source, can't be sure which scenario is true
- 0 Even with source, there are different ways of counting
- 0 Multiple format string problems are especially difficult to distinguish

```
strcpy(arg, long_input);
```

if (strcmp(cmd, "show") == 0) {
 process_show_command(arg); }
elsif (strcmp(cmd, "clear") == 0) {
 process_show_command(arg); }

if (strcmp(cmd, "show") == 0) {
 strcpy(str, long_input);
 process_show_command(str); }
 elsif (strcmp(cmd, "clear") == 0) {
 strcpy(str, long_input);
 process_clear_command(str); }

if (strcmp(cmd, "show") == 0) { if (strcmp(arg1, "script") == 0) { strcpy(str, long_input); show script(str); } elsif (strcmp(arg1, "archive") == 0) { strcpy(str, long input); show archive(str); } elsif (strcmp(arg1, "log") == 0) { strcpy(str, long_input); show log(str); } } elsif (strcmp(cmd, "clear") == 0) { if (strcmp(arg1, "script") == 0) { strcpy(str, long_input); show script(str); } elsif (strcmp(arg1, "archive") == 0) { strcpy(str, long_input); show archive(str); } elsif (strcmp(arg1, "log") == 0) { strcpy(str, long_input); show log(str); } }

VDB Abstraction: 1 to 5 Entries?

CVE-1: SQL injection in version 1.x through login.php and order.php.

CVE-2: SQL injection in version 2.x through admin.php.

CVE-3: XSS in version 2.x through login.php and search.php.

ISS and Bugtraq ID

1: Mult. SQL injection in 1.x and 2.x

2: XSS in 2.x

Secunia, ISS, and Bugtraq ID

1: SQL injection and XSS in 1.x and 2.x

Somebody somewhere, probably

1: login.php

2: order.php

3: admin.php

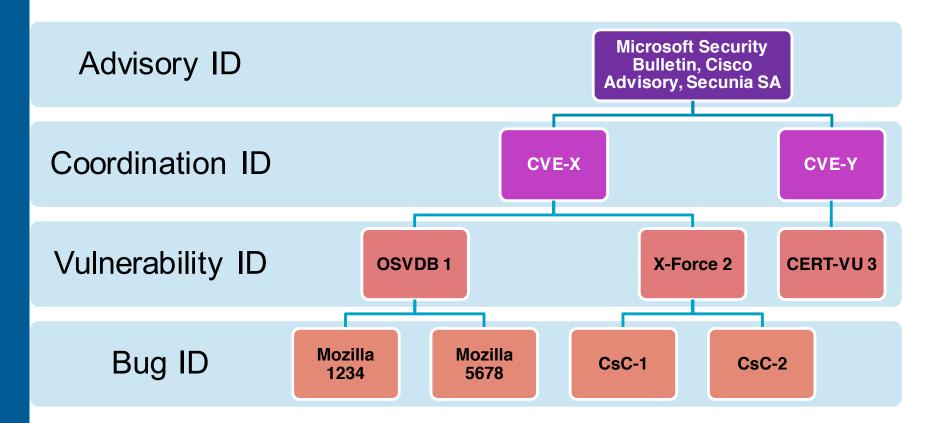
4: search.php

OSVDB

1: SQL injection in login.php

2: SQL injection in order.php

3: SQL injection in admin.php


4: XSS in login.php

5: XSS in search.php

© 2015 The MITRE Corporation. All rights reserved.

Different Audience → Different Abstraction

- CVE was always intended as a coordination ID
- We originally thought that coordination could operate at the vulnerability level
- But, there's too much fluctuation and variation in vulnerability information in the early stages, when coordination ID is most needed

© 2015 The MITRE Corporation. All rights reserved.

MITRE

21

Content Decisions: Abstraction

- AB1: SPLIT if different flaw types
- AB2: SPLIT if different versions are affected
- SPLIT if different vectors are released at a later time
- SPLIT if different codebases
- Otherwise MERGE
- Refinements and/or interpretations of the above

These factors are generally stable across all phases of vulnerability disclosure, and often known early in the game.

http://cve.mitre.org/cve/editorial_policies/cd_abstraction.html

Content Decisions: Inclusion

INCLUDE any issue for software that

- Could be deployed in an enterprise
- Could be network-connected physical devices
- Has minimal, but non-zero, risk
 - path disclosure, admin-to-SYSTEM, client-side crasher

EXCLUDE any issue that

- Is "site-specific," SaaS, hosted, "in the cloud," ...
- Is provably wrong
- Is just a rumor
- Is not "actionable"
- Is "just a bug" (e.g. defenestration exploit)

Site-specific / hosted software can be difficult to identify.

Issue: What is a Vulnerability?

- CVE was originally called "Common Vulnerability Enumeration"
- Security tools included many "non-vulnerabilities"
- "Terminological warfare" by Editorial Board in August 1999
 - 2 main debates
 - What is a vulnerability?
 - Should CVE include things that aren't vulnerabilities?
 - Primary example: running finger (CVE-1999-0612)
 - "Stepping stone" but not directly exploitable
 - Various alternate terms were debated
 - "Exposure" wasn't being used that often back then, and there was a strong need to keep the CVE acronym, so...
- See:
 - http://cve.mitre.org/about/terminology.html
 - http://cve.mitre.org/board/archives/1999-08/threads.html

Vulnerability definitions vary widely!

Issue: What is a Real Vulnerability?

- ~50% of all issues are not publicly acknowledged by the vendor
 - http://cve.mitre.org/board/archives/2000-09/msg00038.html
- Many vulnerabilities are found in obscure software by unknown researchers without independent confirmation
- Resource-intensive to verify every report
- Some issues don't cross "privilege boundaries"
- Some issues are technically security issues, but extremely low risk
- If it's reported but it may not be real, should it be added to CVE?
 - It will at least be reviewed
 - How much verification is necessary?

0 Extreme example

```
CVE-1999-0205 Denial of service in Sendmail 8.6.11 and 8.6.12
```

- Could not be replicated by vendor
- Checked by multiple tools (which may only compare banners)

Candidate Reservation Process

Researcher

Request Candidate

CVE-YYYY-NNNN

• Request candidate from CNA

- Provide candidate number to vendor and other parties
- Include candidate number in initial public announcement
- Notify MITRE of announcement
- Perform due diligence to avoid duplicate or incorrect candidates
- Should work with affected vendor Do not use candidates in to increase confidence in correctness of the candidate

• Obtain pool of candidate numbers from MITRE

Candidate

Authority

Numbering

• Define requirements for researchers to obtain a candidate

CNA

POOL

- Assign correct number of candidate numbers
- Ensure candidate is shared across all parties
- "competitive" fashion

• Primary CNA

MITRE

- Accessible to researchers via cve-assign@mitre.org
- Educate CNA about content decisions
- Update CVE web site when candidate is publicly announced
- Track potential abuses

Anatomy of a CVE Description: CVE-2009-4623

Multiple PHP remote file inclusion vulnerabilities in Advanced Comment System 1.0 allow remote attackers to execute arbitrary PHP code via a URL in the ACS_path parameter to (1) index.php and (2) admin.php in advanced_comment_system/. NOTE: this might only be a vulnerability when the administrator has not followed installation instructions in install.php.

Flaw type, vendor name, product name, affected versions, remote/local, impact, attack vectors, clarifiers.

10 Years of CVE Descriptions

CVE	Desc
CVE- 1999- 0067	CGI phf program allows remote command execution through shell metacharacters.
CVE- 2000- 0067	CyberCash Merchant Connection Kit (MCK) allows local users to modify files via a symlink attack.
CVE- 2001- 0067	The installation of J-Pilot creates the .jpilot directory with the user's umask, which could allow local attackers to read other users' PalmOS backup information if their umasks are not securely set.
CVE- 2002- 0067	Squid 2.4 STABLE3 and earlier does not properly disable HTCP, even when "htcp_port 0" is specified in squid.conf, which could allow remote attackers to bypass intended access restrictions.
CVE- 2003- 0067	The aterm terminal emulator 0.42 allows attackers to modify the window title via a certain character escape sequence and then insert it back to the command line in the user's terminal, e.g. when the user views a file containing the malicious sequence, which could allow the attacker to execute arbitrary commands.
CVE- 2004- 0067	Multiple cross-site scripting (XSS) vulnerabilities in phpGedView before 2.65 allow remote attackers to inject arbitrary HTML or web script via (1) descendancy.php, (2) index.php, (3) individual.php, (4) login.php, (5) relationship.php, (6) source.php, (7) imageview.php, (8) calendar.php, (9) gedrecord.php, (10) login.php, and (11) gdbi_interface.php. NOTE: some aspects of vector 10 were later reported to affect 4.1.

MITRE

10 Years of CVE Descriptions

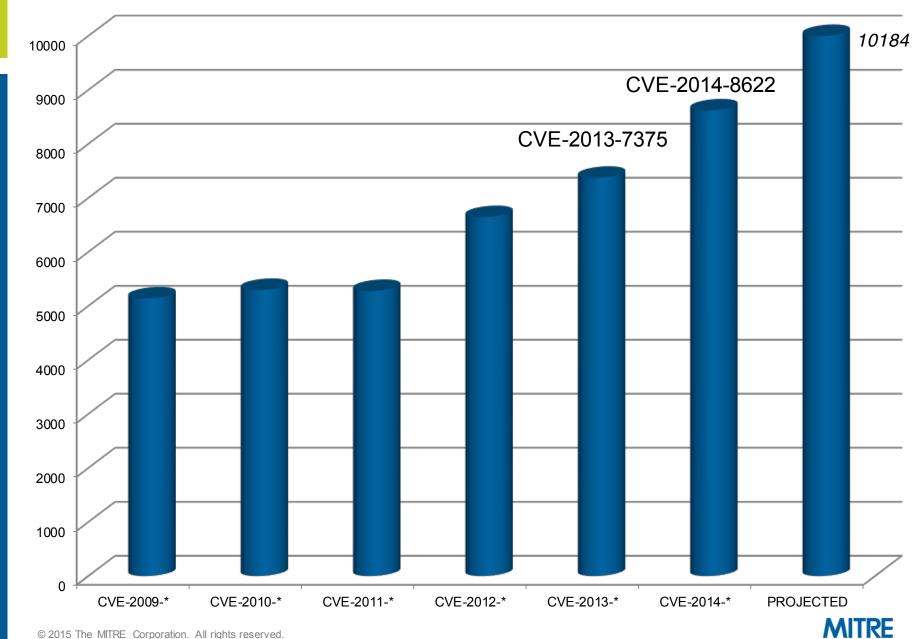
CVE Desc

CVE- 2005-0067	The original design of TCP does not require that port numbers be assigned randomly (aka "Port randomization"), which makes it easier for attackers to forge ICMP error messages for specific TCP connections and cause a denial of service, as demonstrated using (1) blind connection-reset attacks with forged "Destination Unreachable" messages, (2) blind throughput-reduction attacks with forged "Source Quench" messages, or (3) blind throughput-reduction attacks with forged ICMP messages that cause the Path MTU to be reduced. NOTE: CVE-2004-0790, CVE-2004-0791, and CVE-2004-1060 have been SPLIT based on different attacks; CVE-2005-0065, CVE-2005-0066, CVE-2005-0067, and CVE-2005-0068 are related identifiers that are SPLIT based on the underlying vulnerability. While CVE normally SPLITs based on vulnerability, the attack-based identifiers exist due to the variety and number of affected implementations and solutions that address the attacks instead of the underlying vulnerabilities.
-------------------	--

CVE- SQL injection vulnerability in login.php in VEGO Links Builder 2.00 and earlier allows remote attackers to execute arbitrary SQL commands via the username parameter.

CVE-2007-0067 Unspecified vulnerability in the Lotus Domino Web Server 6.0, 6.5.x before 6.5.6, and 7.0.x before 7.0.3 allows remote attackers to cause a denial of service (daemon crash) via requests for URLs that reference certain files.

CVE-2008-0067 Multiple stack-based buffer overflows in HP OpenView Network Node Manager (OV NNM) 7.01, 7.51, and 7.53 allow remote attackers to execute arbitrary code via (1) long string parameters to the OpenView5.exe CGI program; (2) a long string parameter to the OpenView5.exe CGI program, related to ov.dll; or a long string parameter to the (3) getcvdata.exe, (4) ovlaunch.exe, or (5) Toolbar.exe CGI program.

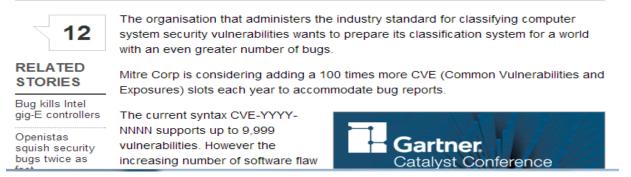

CVE- ** RESERVED **

2009-0067

CVE-Unspecified vulnerability in the Oracle Containers for J2EE component in Oracle Application Server2010-006710.1.2.3 and 10.1.3.4 allows remote attackers to affect confidentiality via unknown vectors.

Maximum CVE-YYYY-nnnn ID per year (as of Nov 5, 2014)

We Have a CVE-10K Problem: What Do We Do After CVE-2014-9999?



SECURITY

Bug-hunters: They're coming outta the goddamn walls, aargh!

Security bods prep for more and more aliens bursting out of software

By John Leyden, 5 Feb 2013 John Leyden, 5 Feb 2013

Yawn. So What?

- If we made a 4-digit assumption, maybe^Wdefinitely others did too
- A lot of code, processes, & formats use CVE IDs
- Hundreds of CVE-compatible products in many languages
- Thousands of "users" across the globe
- We don't know where that all is
- CVE is part of the infrastructure
- CVE is everywhere
- People depend on it without even knowing
- People use it in ways we don't know
- Obligatory Heartbleed (I mean, CVE-2014-0160) reference
 - Which obscure nooks and crannies of the Interwebz has it been found lately?

Where the Wild Things Are

Output Format

- Wider than 13-character columns
- Sorting

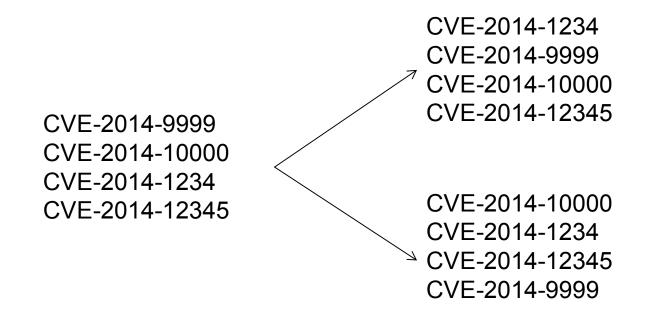
Input Format

- Data lengths
- Structures
- Search routines

Extraction or Parsing

 4-digit assumption, if violated, could trigger silent failure, fatal error, or use of the wrong ID for an unrelated vulnerability

Interpreters Don't Care ('bout number representation)

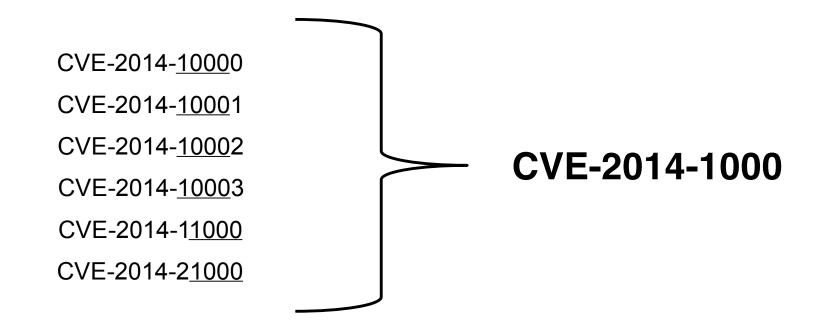

```
# My awesome CVE ID detector in Perl. Shush.
$str = "CVE-2014-839572957648549";
if ($str =~ /CVE-(\d+)-(\d+)/) {
    $id = sprintf("CVE-%4d-%04d", $1, $2);
}
else { $id = "PARSE-ERROR"; }
print "ID = $id\n";
```

CVE-2014--001

- Big number that sprintf can't handle? Return -1
- Format -1 with leading zeroes in 4 digits: -001

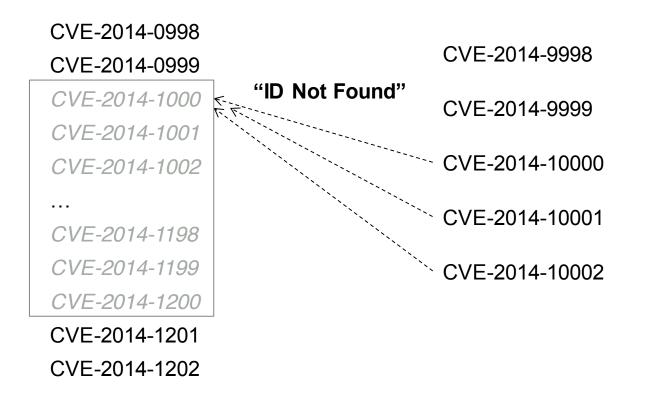
Sorting

- CVE IDs aren't published in order, but good sorting is aesthetic and sometimes a good visual optimization
- What happens with typical string-only sorting of variable-length IDs?


The New Syntax – Starting January 1, 2014

CVE-YYYY-NNNN...N

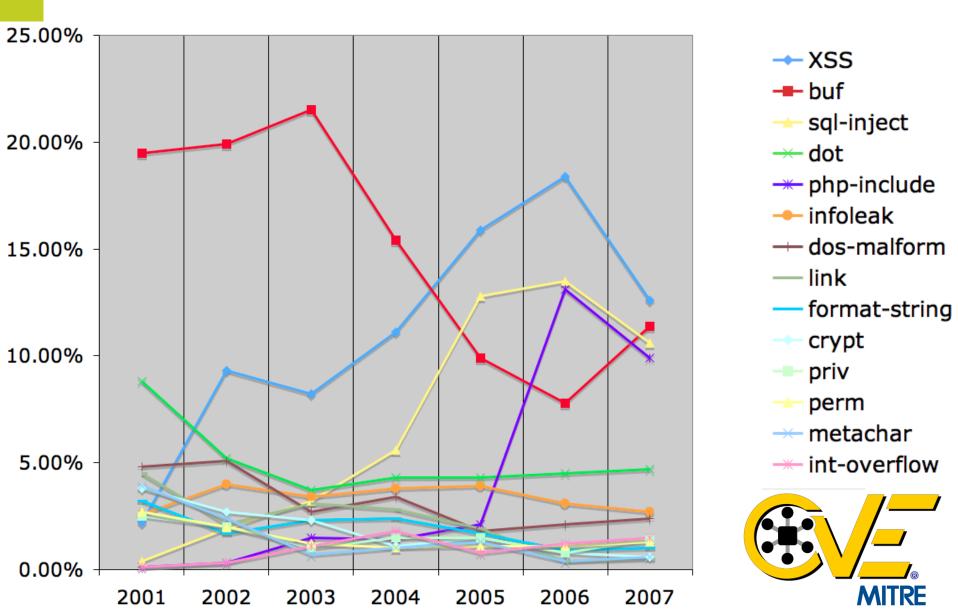
- 4-digit minimum in sequence number
- No maximum
- Add extra digits only when needed
- Only leading 0's with 4 digits


http://cve.mitre.org/cve/identifiers/syntaxchange.html

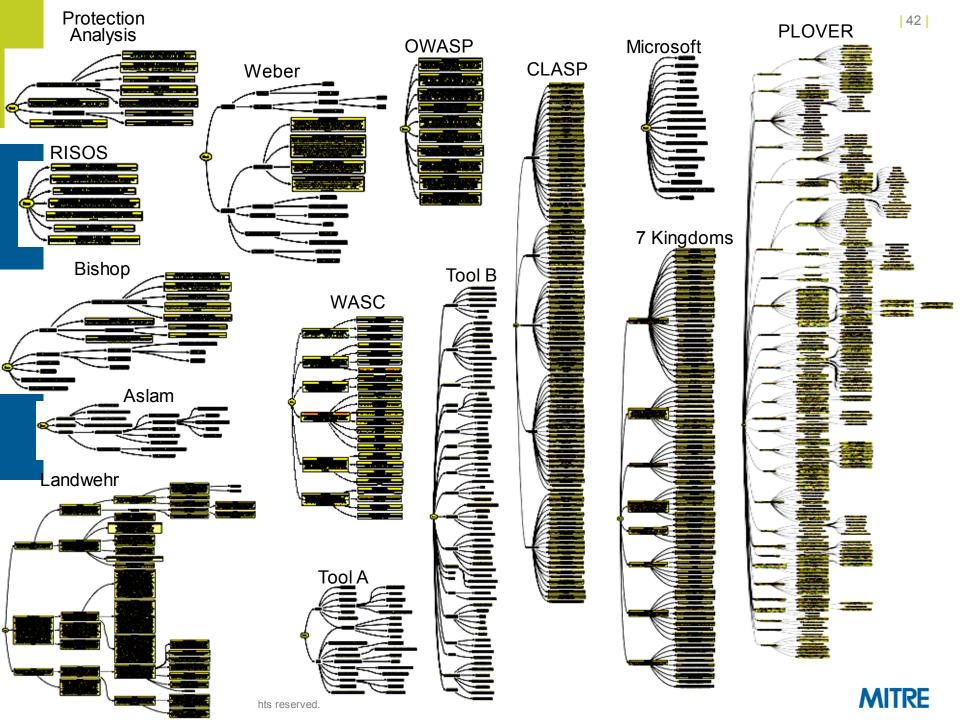
Truncation: The Four Digit Assumption

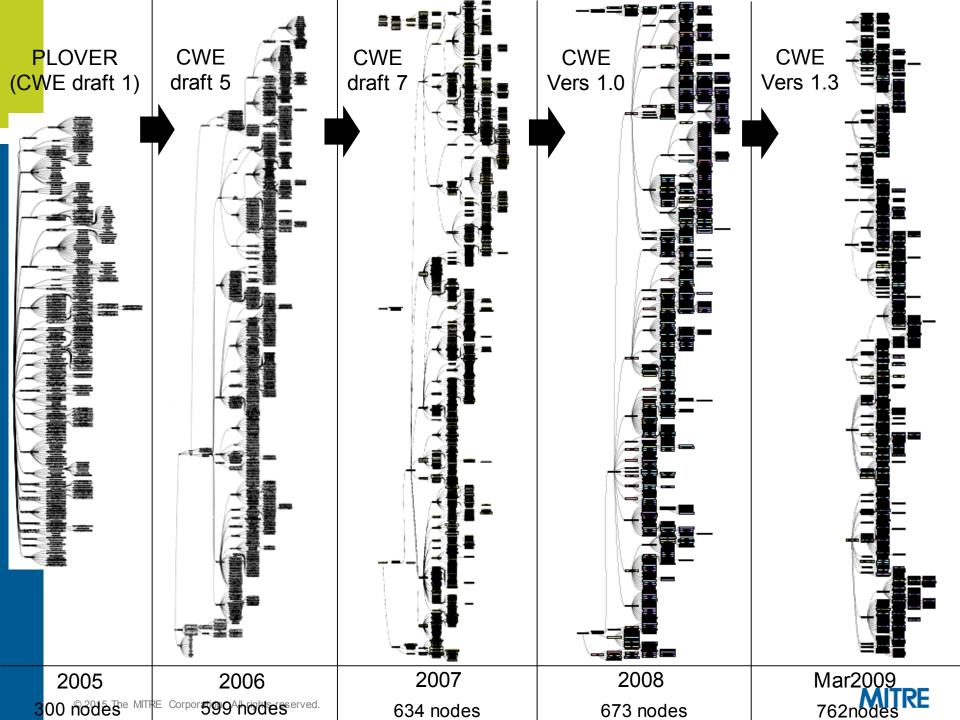
- Wrong ID = the wrong vulnerability = wasted time and, worse, being vulnerable and not knowing it!
- We have seen (and I have written) code that does truncation.
- We have seen at least one live web site that truncates

Minimizing the Pain of Truncation Errors: The Protection Block



From individual vulnerabilities to whole classes of problems...




Vulnerability Type Trends: A Look at the CVE List (2001 - 2007)

Removing and Preventing the Vulnerabilities

9 → XSS → buf 14	 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') (79) Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic XSS) (80) Improper Neutralization of Script in an Error Message Web Page (81) Improper Neutralization of Script in Attributes of IMG Tags in a Web Page (82) Improper Neutralization of Script in Attributes in a Web Page (83) Improper Neutralization of Encoded URI Schemes in a Web Page (84) Doubled Character XSS Manipulations (85) Improper Neutralization of Invalid Characters in Identifiers in Web Pages (86) Improper Neutralization of Alternate XSS Syntax (87) 	
	Improper Restriction of Operations within the Bounds of a Memory Buffer (119) Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') (120) 	
→ dot19	 Write-what-where Condition (123) Out-of-bounds Read (125) 	
php-include	 Improper Handling of Length Parameter Inconsistency (130) Improper Validation of Array Index (129) 	
- infoleak	 Return of Pointer Value Outside of Expected Range (466) Access of Memory Location Before Start of Buffer (786) Access of Memory Location After End of Buffer (788) 	
dos-malform	Buffer Access with Incorrect Length Value 805 Untrusted Pointer Dereference (822)	
— link	 Use of Out-of-range Pointer Offset (823) Access of Uninitialized Pointer (824) 	
— format-string	Expired Pointer Dereference (825)	
crypt	Path Traversal (22) Relative Path Traversal (23) 	
priv	Path Traversal: '/filedir' (24) Path Traversal: '//filedir' (25)	
perm	<pre>8 more here> Path Traversal: '//' (34) Path Traversal: '//' (35)</pre>	
→ metachar	Absolute Path Traversal (36) Path Traversal: '/absolute/pathname/here' (37)	
	 Path Traversal: '\absolute\pathname\here' (38) Path Traversal: 'C:dirname' (39) Path Traversal: '\UNC\share\name\' (Windows UNC Share) (40) 	E

Current Community Contributing to the Common Weakness Enumeration

- AppSIC
- Apple
- Aspect Security
- Booz Allen Hamilton Inc.
- Cenzic
- CERIAS/Purdue University
- CERT/CC
- Cigital
- Codenomicon
- Core Security
- Coverity
- DHS
- Fortify
- Gramma Tech
- IPA/JPCERT
- IBM
- Interoperability Clearing House
- JHU/APL
- JMU
- Kestrel Technology
- KDM Analytics
- Klocwork
- McAfee
- Microsoft
- MIT Lincoln Labs
- MITRE

- North Carolina State University
- NIST
- NSA
- OMG
- Oracle
- Ounce Labs
- OSD
- OWASP
- Palamida
- Parasoft
- PolySpace Technologies
- proServices Corporation
- SANS Institute
- SecurityInnovation
- Security University
- Semantic Designs
- SofCheck
- SPI Dynamics
- SureLogic, Inc.
- Symantec
- UNISYS
- VERACODE
- Watchfire
- WASC
- Whitehat Security, Inc.

http://blogs.msdn.com/sdl/archive/2008/12/18/ms08-078-and-the-sdl.aspx

RSS ~ Q- Google

Recent Posts

MS08-078 and the SDL Announcing CAT.NET CTP and AntDXSS v3 beta SDL videos BlueHat SDL Sessions Wrap-up Secure Coding Secrets?

Tags

-

C

Common Criteria Crawi Walk Run Privacy SDL SDL Pro Network Security Assurance Security Blackhat SDL threat modeling

News

Blogroll

BlueHat Security Briefings The Microsoft Security Response Center Michael Howard's Web Log The Data Privacy Imperative

Security Vulnerability Research & Defense Visual Studio Code Analysis Blog

MSRC Ecosystem Strategy Team

Books / Papers / Guidance

The Security Development Lifecycle (Howard and Lipner) Privacy Guidelines for Developing

Software Products and Services

Microsoft Security Development Lifecycle (SDL) – Portal

Microsoft Security Development Lifecycle (SDL) – Process Guidance (Web)

Microsoft Security Development Lifecycle (SDL) – Process Guidance

MS08-078 and the SDL *****

Hi, Michael here.

Every bug is an opportunity to learn, and the security update that fixed the data binding bug that affected Internet Explorer users is no exception.

The Common Vulnerabilities and Exposures (CVE) entry for this bug is CVE-2008-4844.

Before I get started, I want to explain the goals of the SDL and the security work here at Microsoft. The SDL is designed as a multi-layered process to help systemically reduce security vulnerabilities; if one component of the SDL process fails to prevent or catch a bug, then some other component should prevent or catch the bug. The SDL also mandates the use of security defenses whose impact will be reflected in the "mitigations" section of a security bulletin, because we know that no software development process will catch all security bugs. As we have said many times, the goal of the SDL is to "Reduce vulnerabilities, and reduce the severity of what's missed."

In this post, I want to focus on the SDL-required code analysis, code review, fuzzing and compiler and operating system defenses and how they fared.

Background

The bug was an invalid pointer dereference in MSHTML.DLL when the code handles data binding. It's important to point out that there is no heap corruption and there is no heap-based buffer overrun!

When data binding is used, IE creates an object which contains an array of data binding objects. In the code in question, when a data binding object is released, the array length is not correctly updated leading to a function call into freed memory.

The vulnerable code looks a little like this (by the way, the real array name is _aryPXfer, but I figured ArrayOfObjectsFromIE is a little more descriptive for people not in the Internet Explorer team.)

int MaxIdx = ArrayOfObjectsFromIE.Size()-1;

for (int i=0; i <= MaxIdx; i++) {

if (!ArrayOfObjectsFromIE[i])

continue;

ArrayOfObjectsFromIE[i]->TransferFromSource();

...

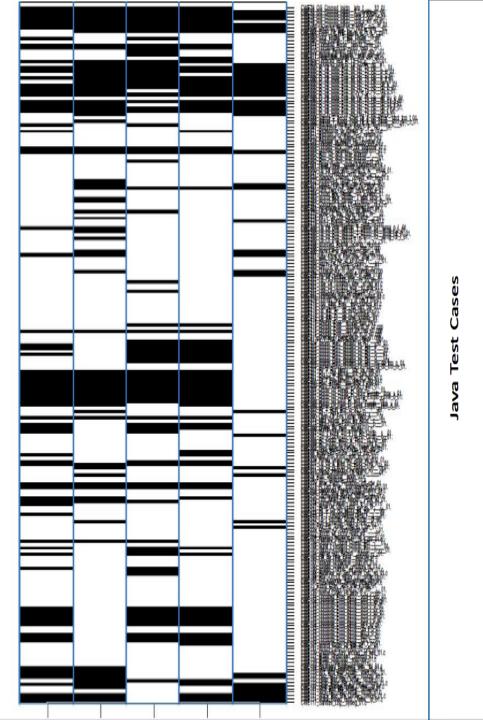
3

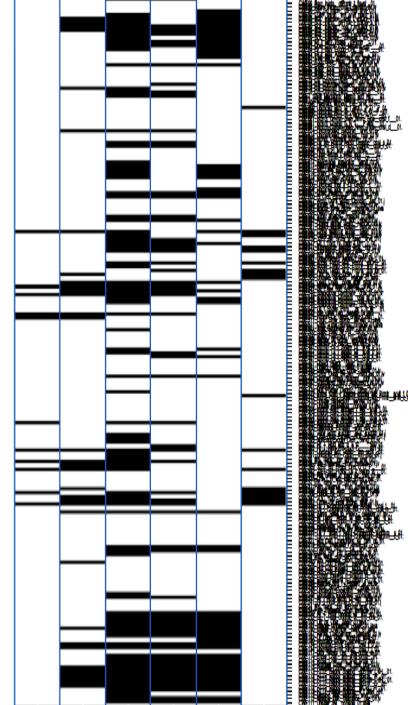
Here's how the vulnerability manifests itself: if there are two data transfers with the same identifier (so MaxIdx is 2), and the first transfer updates the length of the ArrayOfObjectsFromIE array when its work was done and releases its data binding object, the loop count would still be whatever MaxIdx was at the start of the loop, 2.

This is a time-of-check-time-of-use (TOCTOU) bug that led to code calling into a freed memory block. The Common Weakness Enumeration (CWE) classification for this vulnerability is <u>CWE-367</u>.

The fix was to check the maximum iteration count on each loop iteration rather than once before the loop starts: this is the correct fix for a TOCTOU bug a more the check as close as possible to the action because.

a time-of-check-time-of-use (TOCTOU) bug that led to code calling into a freed memory block. The on Weakness Enumeration (CWE) classification for this vulnerability is <u>CWE-367</u>.


September 2008 (5) August 2008 (2) July 2008 (8) June 2008 (4) CTOU issues. We will update our training to address this


Our static analysis tools don't find this because the tools would need to understand the re-entrant nature of the code.

Fuzz Testing



C/C++ "Breadth" Test Case Coverage

Java "Breadth" Test Case Coverage

MITRE

CWE/SANS Top 25 Programming Errors

Sponsored by:

- National Cyber Security Division (DHS)
- Information Assurance Division (NSA)
- List was selected by a group of security experts from 35 organizations including:
 - Academia: Purdue, Univ. of Cal., N. Kentucky Univ.
 - Government: CERT, NSA, DHS
 - Software Vendors: Microsoft, Oracle, Red Hat, Apple
 - Security Vendors: Veracode, Fortify, Cigital, Symantec
- Released in 2009, updated in 2010 and 2011
- Future versions possible

Robert C. Seacord	CERT	Ryan Barnett	Breach Security	
Pascal Meunier	CERIAS, Purdue University	Antonio Fontes	New Access SA (Switzerland)	
Matt Bishop	University of California, Davis	Mark Fioravanti II	Missing Link Security Inc.	
Kenneth van Wyk	KRvW Associates	Ketan Vyas	Tata Consultancy Services (TCS)	
Masato Terada	Information-Technology Promotion Agency (IPA) (Japan)	Lindsey Cheng	Secured Sciences Group, LLC	
Sean Barnum	Cigital, Inc.	Ian Peters	Secured Sciences Group, LLC	
Mahesh Saptarshi	Symantec Corporation	Tom Burgess	Secured Sciences Group, LLC	
Cassio Goldschmidt	Symantec Corporation	Hardik Parekh	RSA - Security Division of EMC Corporation	
Adam Hahn	MITRE	Matthew Coles	RSA - Security Division of EMC Corporation	
Jeff Williams	Aspect Security and OWASP	Mouse		
Carsten Eiram	Secunia	Ivan Ristic		
Josh Drake	iDefense Labs at VeriSign, Inc.	Apple Product Security		
Chuck Willis	MANDIANT	Software Assurance Forur	n for Excellence in Code (SAFECode)	
Michael Howard	Microsoft	Core Security Technologie	es Inc.	
Bruce Lowenthal	Oracle Corporation	Depository Trust & Clearing	ng Corporation (DTCC)	
Mark J. Cox	Red Hat Inc.	The working group at the	first OWASP ESAPI Summit	
Jacob West	Fortify Software	National Security Agency	(NSA) Information Assurance Division	
Djenana Campara	Hatha Systems	Department of Homeland	Security (DHS) National Cyber Security Division	
James Walden	Northern Kentucky University	Special	thanks to Alan Ballar and Mason	
Frank Kim	ThinkSec	•	thanks to Alan Paller and Mason SANS), and Janis Kenderdine	
Chris Eng	Veracode, Inc.	and Conor Harris (MITRE)		
Chris Wysopal	Veracode, Inc.		MITRE	

Main Goals of the Top 25

- Raise awareness for developers just starting out in security
- Help universities to teach secure coding
- Empower customers who want to ask for more secure software
- Provide a starting point for in-house software shops to measure their own progress

Rank	Score	ID	Name			
[1]	93.8	CWE-89	Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')			
[2]	83.3	<u>CWE-78</u>	Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')			
[3]	79.0	CWE-120	ffer Copy without Checking Size of Input ('Classic Buffer Overflow')			
[4]	77.7	<u>CWE-79</u>	Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')			
[5]	76.9	CWE-306	Missing Authentication for Critical Function			
[6]	76.8	CWE-862	Missing Authorization			
[7]	75.0	CWE-798	Use of Hard-coded Credentials			
[8]	75.0	CWE-311	Missing Encryption of Sensitive Data			
[9]	74.0	<u>CWE-434</u>	Unrestricted Upload of File with Dangerous Type			
[10]	73.8	<u>CWE-807</u>	Reliance on Untrusted Inputs in a Security Decision			
[11]	73.1	CWE-250	Execution with Unnecessary Privileges			
[12]	70.1	CWE-352	Cross-Site Request Forgery (CSRF)			
[13]	69.3	<u>CWE-22</u>	Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')			
[14]	68.5	<u>CWE-494</u>	Download of Code Without Integrity Check			
[15]	67.8	CWE-863	Incorrect Authorization			
[16]	66.0	<u>CWE-829</u>	Inclusion of Functionality from Untrusted Control Sphere			
[17]	65.5	<u>CWE-732</u>	Incorrect Permission Assignment for Critical Resource			
[18]	64.6	<u>CWE-676</u>	Use of Potentially Dangerous Function			
[19]	64.1	<u>CWE-327</u>	Use of a Broken or Risky Cryptographic Algorithm			
[20]	62.4	CWE-131	Incorrect Calculation of Buffer Size			
[21]	61.5	CWE-307	Improper Restriction of Excessive Authentication Attempts			
[22]	61.1	CWE-601	URL Redirection to Untrusted Site ('Open Redirect')			
[23]	61.0	CWE-134	Uncontrolled Format String			
[24]	60.3	CWE-190	Integer Overflow or Wraparound			
[25]	59.9	CWE-759	Use of a One-Way Hash without a Salt			

Insecure Interaction Between Components

- Risky Resource Management
- Porous Defenses

http://cwe.mitre.org/top25/

HOME EMAIL RSS 2.0 ATOM 1.0

Recent Posts

SDL and the CWE/SANS Top 25

ships!					
Early Days of the SDL, Part Four					
Early Days of the SDL, Part Three					
Early Days of the SDL, Part Two					
Early Days of the SDL, Part One					

one there is a deliver the local data

Tags

Common Criteria **Crawl Walk Run** Privacy **SDL** SDL Pro Network Security Assurance Security Blackhat SDL **threat modeling**

News

About Us

Adam Shostack Bryan Sullivan David Ladd Jeremy Dallman Michael Howard Steve Lipner

Blogroll

BlueHat Security Briefings

Bryan here. The security community has been buzzing since SANS and MITRE's joint announcement earlier this month of their list of the <u>Top 25 Most Dangerous</u> <u>Programming Errors</u>. Now, I don't want to get into a debate in this blog about whether this new list will become the new de facto standard for analyzing security vulnerabilities (or indeed, whether it already has become the new standard). Instead, I'd like to present an overview of how the Microsoft SDL maps to the CWE (SANS list just

	to the CWE/SANS list, just		Title	Education?	Manual Process?	Tools?	Threat Model?
	May.	20	Improper Input Validation	Y	Y	Y	Y
Walk		116	Improper Encoding or Escaping of Output	Y	Y	Y	
	Michael and I have writte		Failure to Preserve SQL Query Structure (aka SQL Injection)		Y	Y	
DEITO	coverage of the Top 25 an	79	Failure to Preserve Web Page Structure (aka Cross-Site Scripting)	Y	Y	Y	
nce	believe that the results te	78	Failure to Preserve OS Command Structure (aka OS Command Injection)	Y		Y	
reat	25 were developed indep	319	Cleartext Transmission of Sensitive Information	Y			Y
	root them out of the softw		Cross-site Request Forgery (aka CSRF)	Y		Y	
	analysis white paper and	362	Race Condition	Y			
			Error Message Information Leak	Y	Y	Y	
	guidance around every m		Failure to Constrain Memory Operations within the Bounds of a Memory Buffer	Y	Y	Y	
	made many of the same s		External Control of Critical State Data	Y			Y
	for you to download and u	73	External Control of File Name or Path	Y	Y	Y	
		426	Untrusted Search Path	Y		Y	
	Below is a summary of ho	94	Failure to Control Generation of Code (aka 'Code Injection')	Y	Y		
	see the SDL covers every		Download of Code Without Integrity Check				Y
	them (race conditions and	404	Improper Resource Shutdown or Release	Y		Y	
	by multiple SDL requirem	665	Improper Initialization	Y		Y	
	tools to prevent or detect	682	Incorrect Calculation	Y		Y	
tools to prevent or detec		205	Improper Access Control (Authorization)	Y	Y		Y
	CWE Title	327	Use of a Broken or Risky Cryptographic Algorithm	Y	Y	Y	
	CWL Htte	259	Hard-Coded Password	Y	Y	Y	Y
		732	Insecure Permission Assignment for Critical Resource	Y	Y		
	20 Improper Input V		Use of Insufficiently Random Values	Ý	Y	Y	
	116 Improper Encodir	250	Execution with Unnecessary Privileges	Y	Y		Y
gs	Escaping of Output	602	Client-Side Enforcement of Server-Side Security	Y			Y

What are the Attacks that would be **Effective Against Your Weaknesses?**

CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

Summary							
Weakness Prevalence	High	Consequences	Data loss, Security bypass				
Remediation Cost	Low	Ease of Detection	Easy				
Attack Frequency	Often	Attacker Awareness	High				

Discussion

These days, it seems as if software is all about the data: getting it into the database, pulling it from the database, massaging it into information, and sending it elsewhere for fun and profit. If attackers can influence the SQL that you use to communicate with your database, then suddenly all your fun and profit belongs to them. If you use SQL gueries in security controls such as authentication, attackers could alter the logic of those gueries to bypass security. They could modify the gueries to steal, corrupt, or otherwise change your underlying data. They'll even steal data one byte at a time if they have to, and they have the patience and know-how to do so. In 2011, SQL injection was responsible for the compromises of many high-profile organizations, including Sony Pictures, PBS, MySOL.com, security company HBGary Federal, and many others.

Technical Details | Code Examples | Detection Methods | References

Prevention and Mitigations

Architecture and Design

Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. For example, consider using persistence layers suc

Architecture and Design

Architecture and Design

If available, use structured mechanisms that autor

Process SOL queries using prepared statements, pa

dynamically construct and execute query strings w

administrator, especially in day-to-day operations.

Specifically, follow the principle of least privilege w

the requirements of the system indicate that a use on all database objects, such as execute-only for s

For any security checks that are performed on the by modifying values after the checks have been pe

If you need to use dynamically-generated guery st

Architecture and Design, Operation

Implementation

Ensure that error messages only contain minimal details that are useful to the intended audience, and nobody else. The messages need to strike the balance between being too cryptic and not being cryptic enough. They should not necessarily reveal the methods that were used to determine the error. Such detailed information can be used to refine the original attack to increase the validation automatically, instead of relying on the d chances of success.

If errors must be tracked in some detail, capture them in log messages - but consider what could occur if the log messages can be viewed by attackers. Avoid recording highly sensitive information such as passwords in any form. Avoid inconsistent messaging that might accidentally tip off an attacker about internal state, such as whether a username is valid or not.

In the context of SQL Injection, error messages revealing the structure of a SQL query can help attackers tailor successful attack strings.

Run your code using the lowest privileges that are **Operation** That way, a successful attack will not immediately

Use an application firewall that can detect attacks against this weakness. It can be beneficial in cases in which the code cannot be fixed (because it is controlled by a third party), as an emergency prevention measure while more comprehensive software assurance measures are applied, or to provide defense in depth. Effectiveness: Moderate

Notes: An application firewall might not cover all possible input vectors. In addition, attack techniques might be available to bypass the protection mechanism, such as using malformed inputs that can still be processed by the component that receives those inputs. Depending on functionality, an application firewall might inadvertently reject or modify legitimate requests. Finally, some manual effort may be required for customization.

Operation, Implementation

If you are using PHP, configure your application so that it does not use register_globals. During implementation, develop your application so that it does not rely on this feature, but be wary of implementing a register_globals emulation that is subject to weaknesses such as CWE-95, CWE-621, and similar issues.

ative approach is to escape or filter all char
needed, such as white space, wrap each ar
of building your own implementation, such
rameters have certain properties that make

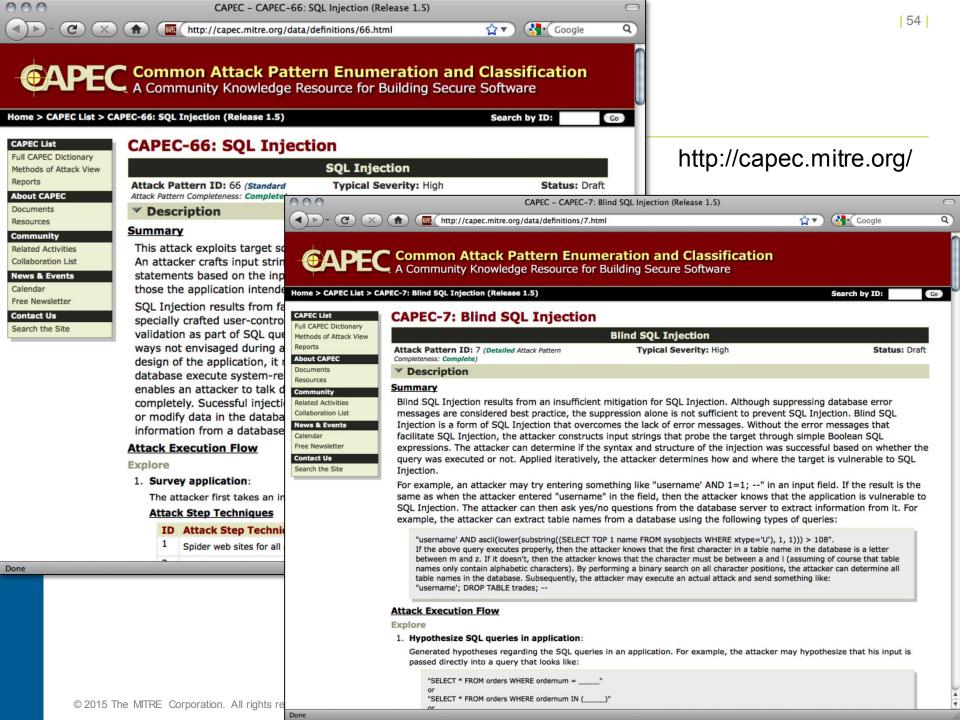
Implementation

Implementation

а

Assume all input is malicious. Use an "accept know

CWE-90 Improper Neutralization of Special Elements used in an LDAP Query ('LDAP Injection') CWE-564 SQL Injection: Hibernate CWE-566 Authorization Bypass Through User-Controlled SQL Primary Key CWE-619 Dangling Database Cursor ('Cursor Injection')


Related Attack Patterns

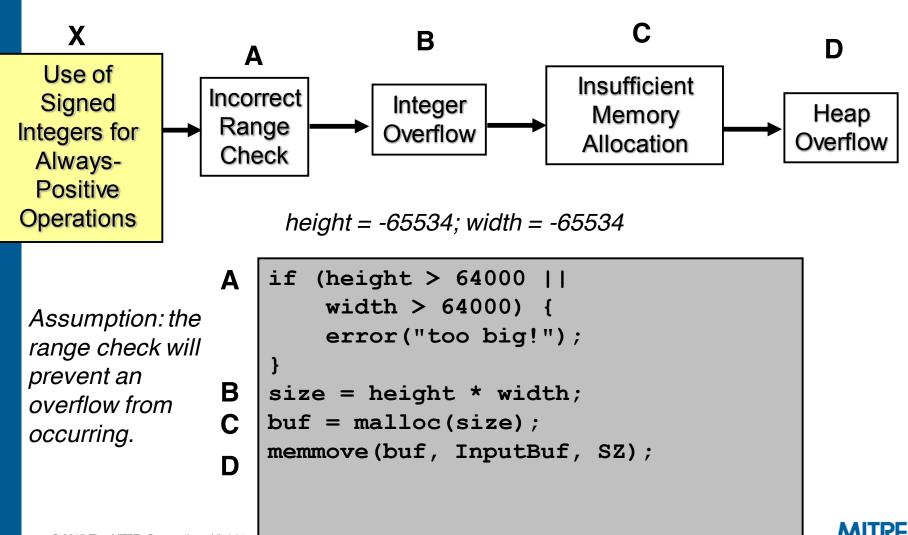
CAPEC-IDs: [view all] 7, 66, 108, 109, 110

Related CWEs

http://cwe.mitre.org

Prioritizing by Technical Impacts: CWE's Common Consequences

		n Weakness Enumeration Developed Dictionary of Software Weakness Types	MOST DANGEROUS SOFTWARE ERRORS	C W/RAF
ome > CWE List :	> CWE- Individual	Dictionary Definition (2.5)	Sea	arch by ID: 78
WE List Ill Dictionary View evelopment View esearch View		Improper Neutralization of Spec d ('SQL Injection')	ial Elements used	d in an SQI
eports	Impro	per Neutralization of Special Elements used in a	an SQL Command ('SQL	Injection')
bout	Applicable	e Platforms		
ources	Languages			
ocuments	All			
AQs	Technology			
ommunity	Database-Se			
se & Citations				
wA On-Ramp	Modes of	Introduction		
Shirt	This weaknes	s typically appears in data-rich applications that save u	iser inputs in a database.	
iscussion List	▼ Common	Consequences		
scussion Archives	Scope	Effect		
ontact Us	Confidentiality	Technical Impact: Read application data		
coring		Since SQL databases generally hold sensitive data, los	ss of confidentiality is a frequ	ent problem with
WSS		SQL injection vulnerabilities.	•	
WRAF	Access	Technical Impact: Bypass protection mechanism		
WE/SANS Top 25	Control	If poor SQL commands are used to check user names		ssible to connect
ompatibility		to a system as another user with no previous knowled	lge of the password.	
equirements	Access Control	Technical Impact: Bypass protection mechanism		
	Control	If authorization information is held in a SQL database,		e this information
overage Claims		through the successful exploitation of a SQL injection Technical Impact: <i>Modify application data</i>	vuinerability.	
overage Claims epresentation	Integrity			
overage Claims	Integrity	Just as it may be possible to read sensitive information	n it is also possible to make	changes or even


Technical Impact	Automated Analysis	Automated Dynamic Analysis	Automated Static Analysis	Black Box	Fuzzing	Manual Analysis	Manual Dynamic Analysis	Manual Static Analysis	White Box
Execute unauthorized code or commands		<u>78, 120, 129, 131, 476, 805</u>	<u>78, 79, 98, 120, 129, 131, 134, 190, 426, 798, 805</u>	<u>79, 129,</u> <u>134, 190,</u> <u>426, 494,</u> <u>698, 798</u>		<u>98, 120,</u> <u>131, 190,</u> <u>426, 494,</u> <u>805</u>	<u>476, 798</u>	<u>78, 798</u>	
Gain privileges / assume identity		<u>601</u>	<u>306, 352, 426, 601, 798</u>	<u>259, 426, 798</u>		<u>259, 306,</u> <u>352, 426</u>	<u>798</u>	<u>601, 798,</u> <u>807</u>	
Read data	<u>209, 311</u> , <u>327</u>	<u>78, 89, 129, 131, 209, 404, 665</u>	<u>78, 79, 89, 129, 131, 134, 352, 426, 798</u>	<u>14, 79,</u> <u>129, 134,</u> <u>319, 426,</u> <u>798</u>		<u>89, 131,</u> <u>209, 311</u> , <u>327, 352,</u> <u>426</u>	<u>209</u> , <u>404</u> , <u>665</u> , <u>798</u>	<u>78, 798</u>	<u>14</u>
Modify data	<u>311, 327</u>	<u>78, 89, 129, 131</u>	<u>78, 89, 129, 131, 190, 352</u>	<u>129, 190,</u> <u>319</u>		<u>89, 131,</u> <u>190, 311,</u> <u>327, 352</u>		<u>78</u>	
DoS: unreliable execution		<u>78, 120, 129, 131, 400, 476, 665, 805</u>	<u>78, 120, 129, 131, 190, 352, 400, 426, 805</u>	<u>129, 190, 426, 690</u>	<u>400</u>	<u>120, 131,</u> <u>190, 352,</u> <u>426, 805</u>	<u>476, 665</u>	<u>78</u>	
DoS: resource consumption		<u>120, 400, 404,</u> <u>770, 805</u>	<u>120, 190, 400, 770, 805</u>	<u>190</u>	<u>400</u> , <u>770</u>	<u>120, 190,</u> <u>805</u>	<u>404</u>	<u>770</u>	<u>412</u>
Bypass protection mechanism		<u>89, 400, 601, 665</u>	<u>79, 89, 190, 352, 400, 601, 798</u>	<u>14, 79,</u> <u>184, 190,</u> <u>733, 798</u>	<u>400</u>	<u>89, 190,</u> <u>352</u>	<u>665, 798</u>	<u>601</u> , <u>798</u> , <u>807</u>	<u>14,</u> 733
Hide activities	<u>327</u>	<u>78</u>	<u>78</u>			<u>327</u>		<u>78</u>	

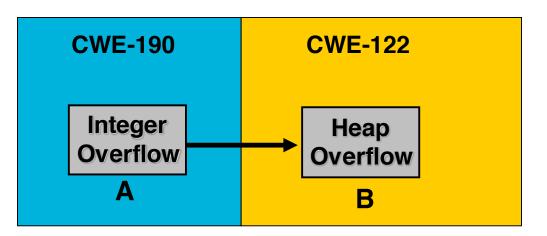
MITRE

Challenges and complexities... or, why some vulnerabilities are still with us

Chains: Why Buffer Overflows are Still Here

MITRE

58


Symbolic Link Following

Symlink Following

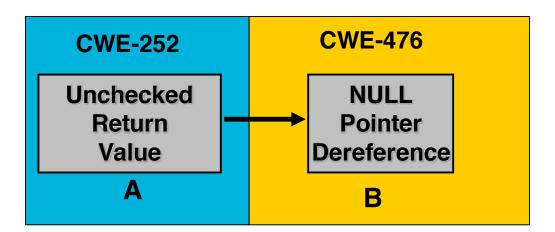
CWE-41

Named Chain Example: Integer Overflow to Heap Overflow (CWE-680)

Assumption: height and width are reasonable sizes.

```
height = 65534; width = 65534
size = height * width;
buf = malloc(size);
memmove(buf, InputBuf, SZ);
```

The buffer overflow occurs because the newly created buffer is smaller than expected, because the integer overflow causes the 'size' variable to be smaller than expected.


Α

B

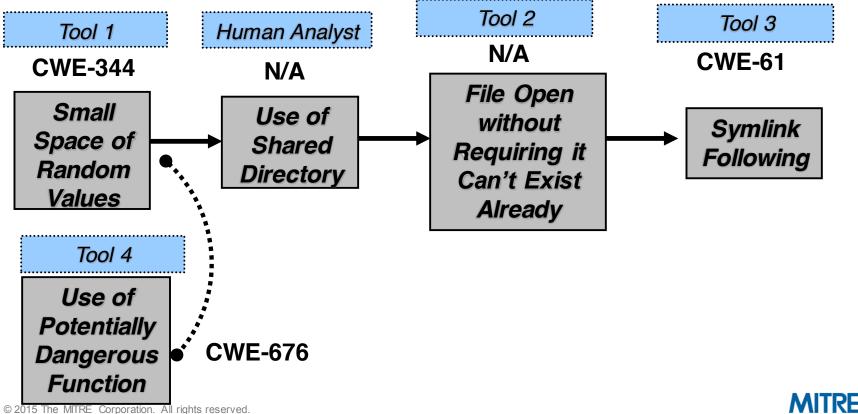
60

Named Chain Example: Unchecked Return Value to NULL Pointer Dereference (CWE-690)

Assumption: height and width are reasonable sizes.

```
height = 63000; width = 63000
size = height * width;
buf = malloc(size);
memmove(buf, InputBuf, SZ);
```

With properly selected height and width, an extremely large size value could cause malloc to return NULL due to out-of-memory conditions.


61

Α

B

Chains, Composites, and Code Scanning

- Comparisons between code scanning capabilities can yield significantly different results
- Very little overlap between tools
 - ... but are they reporting different parts of a chain or composite?

The Four I's Principle of Vulnerability Information

Incomplete

- Missing versions, product names
- Missing patch information

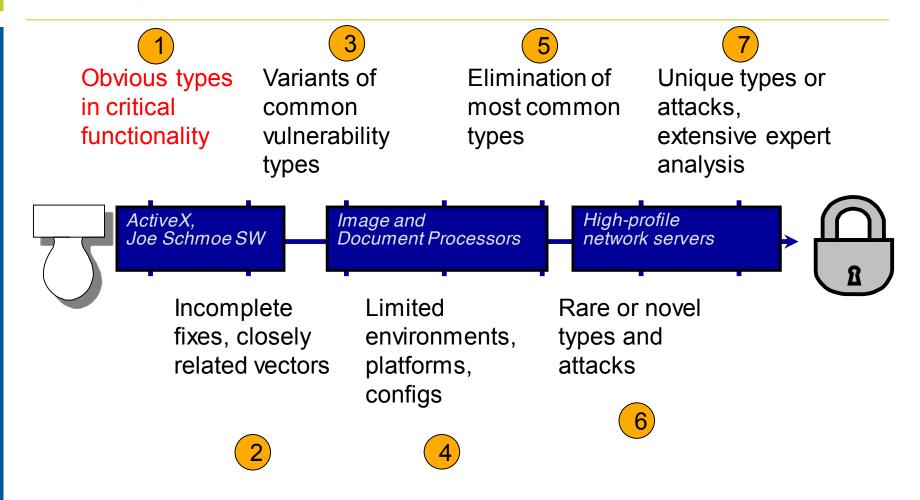
Inaccurate

- Incorrect diagnosis
- Blatantly wrong

Inconsistent


- Acknowledgement discrepancies
- Bug type discrepancies
- Varying severities

Incomprehensible


- Poor writing
- Lack of clear formatting

Coordinated disclosure between researcher and vendor frequently wipes these out.

Typical Vulnerability History of a Product (Using 2007-era Examples)

2007 Theories with 2015 Applications: Things. And Stuff.

- Skateboard Bluetooth PIN guessing property damage, human harm
- Toilet environmental resource consumption, noise, "user inconvenience"
- Infusion pump, other medical devices too much, too little, too late
- Coffee maker electricity consumption, fire risk
- Voting machine loss of confidentiality, integrity, availability, and democracy
- uConnect car entertainment system human harm, loss of precious national resources such as Forbes journalists

Futures

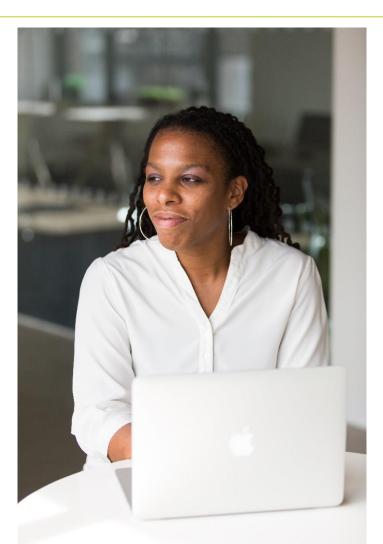
CWE

- New weaknesses, variations of old themes
- Greater emphasis on design-level and "new" product classes, e.g. mobile or medical
- Engagement with academic community
 - Lots of potential for research!

CVE

- Low hanging fruit gone?
- Scale, scale, scale!
- Automation / fuzzing
- Massive influx of new/inexperienced researchers
- Process changes to increase CVE output and make it more reliable
- Focus on key products and data sources; no longer "all" vulnerabilities
- Top 25
 - Time for a new one?
 - But a general Top 25 can be of limited use
 - ... yet we get asked about it ALL THE TIME
 - Ideal: customizable Top 25 lists
 - Next version (or variant) in 2015

Unsolicited Career Guidance


Self-directed career opportunities

- You can find a niche
- Many careers don't require hard-core exploits
- Local conferences are (relatively) cheap, and you can volunteer
- Skillz
 - Good writing and communication are extremely rare and extremely valuable
 - Empathy (for developers, users, peers, etc.) also extremely rare and (increasingly) valuable
 - Fundamental computing and networking is helpful but not necessary?
- Educating yourself
 - Try to know what you don't know
 - Learn the "mindset"
 - The older generation (i.e. me) aren't necessarily doing a good job of this
 - What separates a "bug" from a "vulnerability" from a "feature?"
 - Bug bounties

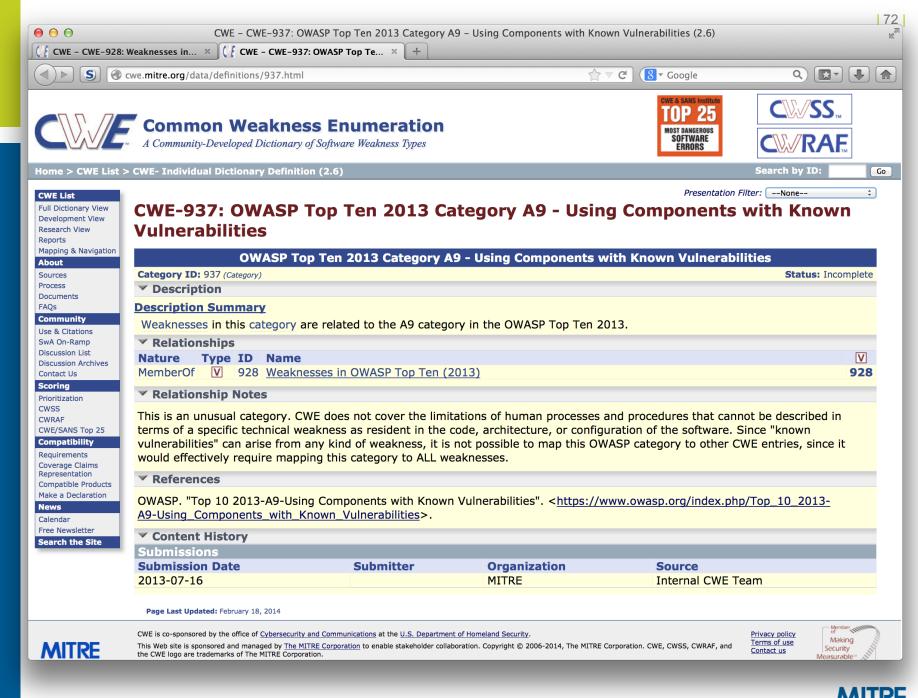
Thoughts? Questions? Answers?

Credit: #WOCinTechChat

Contact Me

@sushidude

coley@mitre.org


Backup Slides

The Classification Problem: Same Term, Many Perspectives, Lots of Overlap

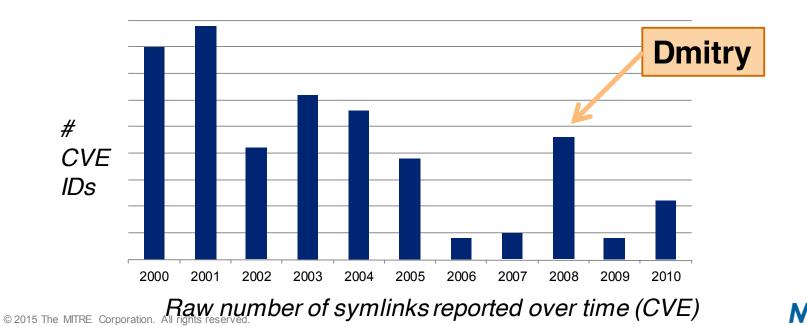
Term	Attack	Vuln/Weakness	Consequence
Buffer Overflow	Long string argument Length field inconsistency Large number of events, etc.	Failure to restrict length Failure to control offset Frror in attempting to do either of these	Write of data past explicitly specified boundaries of a buffer Crash, code execution, control/data flow modification
Format String	Format string specifiers relative to the underlying representation in use (typically C-style strings)	Failure to fully control contents of format strings	Write of data past explicitly specified boundaries of a buffer Crash, code execution, control/data flow modification
Directory Traversal	"", "/a/b/c", "//", etc.	Failure to properly restrict file within intended subdirectory	Access of file outside intended subdirectory
Information Leak	Provide invalid argument Monitor behavioral or timing results Sniff	Failure to anticipate error conditions Failure to limit info in error messages Failure to zero out sensitive info	Disclosure of sensitive information relative to an implicit or explicit policy of what constitutes "sensitive"
XSS	<pre>SCRIPT>alert('hi') "javascript:alert(document.cookie)" "java#42;script:abc"</pre>	Failure to properly filter, escape, or encode outputs with respect to their particular role (e.g. tags or tag arguments), in a fashion that is syntactically or semantically valid for the representation and encoding that are currently in use	Execution of script code Modification of format or presentation
DoS	Provide invalid argument	Failure to anticipate or handle error conditions Failure to properly limit scope of an error	Crash "Memory Corruption" Infinite loop
DoS	Large number of events Send a large amount of data Manipulate algorithmic complexity	Failure to sufficiently control resource consumption relative to performance expectations for the application and/or its environment	Crash "Memory Corruption" Infinite loop
Authentication Bypass	Perform invalid sequence of instructions, e.g. direct request Replay challenge/response Cookie modification SQL injection	Failure to enforce required sequence of steps Failure to prevent modification of assumed-immutable data Secondary effect of primary issue	Access privileged functionality or data before fully navigating all required authentication steps

CWE-937

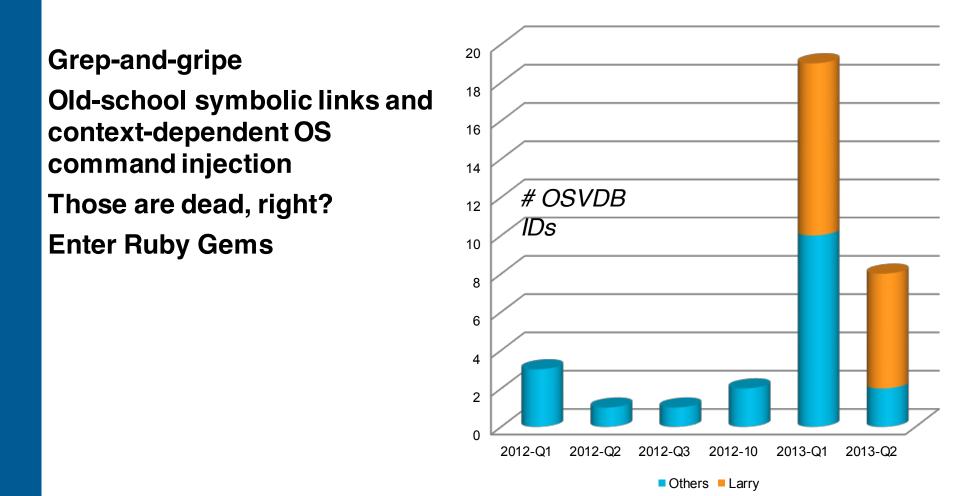
Even after vulnerabilities are discovered and patches made available, many developers use (or continue to ues) the flawed, non-patched version of reused components

apache-archiva-12 activend apache-archiva-1 Spring-beans-2.5.6 Vulnerability: CVE-2010-1622 Severity critical appspy camel ed component codehaus continuum Cof drook d_{space} geronimo geronimo-tomcate 9shell-1.0-alpha-2 Sumor mule mind openijt portals servicemi

Source: Maximizing Benefits and Mitigating Risks of Open


© 2015 The MITRE Corporation. All rights reserved. Source Components in Application Development, by Sonatype

Grep-and-Gripe: Revenge of the Symlinks


grep -A5 -B5 /tmp/ \$PROGRAM

- Dmitry E. Oboukhov, August 2008
- Run against Debian packages
- This kind of thing really hurts pie charts of different vulnerability types

Grep-and-Gripe 2: Larry Cashdollar*

* That's his real last name. He swears it!

MITRE

FFmpeg

Number of vulns 120 skyrocketed recently Maybe because of who was 100 looking at it? 80 # OSVDB IDs 60 40 20 0 2011-H1 2011-H2 2012-H1 2012-H2

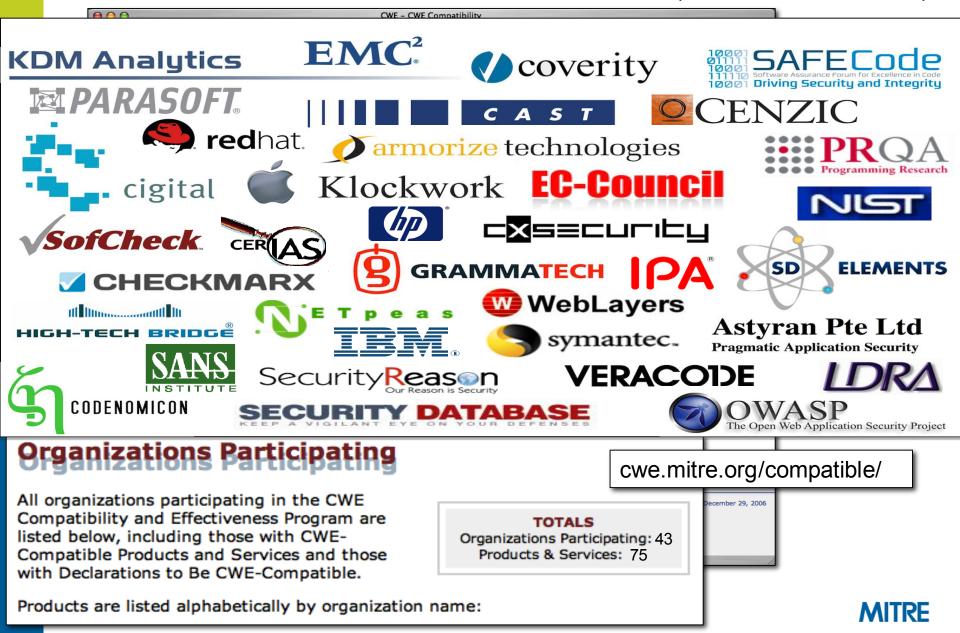
Others j00ru/Gynvael

2013-H1

The Luigi Lossage: Selection & Publication Bias

140 120 100 80 Luigi Others 60 40 20 0 2011-H1 2011-H2 2012-H1 2012-H2 2013-H1 ReVuln Launched

* 2011 Luigi stats may be higher than shown.


SCADA - OSVDB IDs

77

© 2015 The MITRE Corporation. All rights reserved.

CWE Compatibility & Effectiveness Program ^[78]

(launched Feb 2007)

Technical Impacts – Common Consequences

000	CWE - CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') (2.1)							
(1) ► () cwe.	cwe.mitre.org/data/definitions/89.html							
CV	Common Weakness Enumeration A Community-Developed Dictionary of Software Weakness Types							
Home > CWE List	> CWE- Individua	al Dictionary Definition	(2.1)	Search by ID: Go				
CWE List Full Dictionary View	CWE-89:	Improper N	leutralization of Sp	ecial Elements used in an SQL Command ('SQL Injection')				
Development View Research View		20	Improper Neutralization	of Special Elements used in an SQL Command ('SQL Injection')				
Reports About	✓ Description	89 (Weakness Base)		Status: Draft				
Sources	Description 9							
Process Documents FAQs				ternally-influenced input from an upstream component, but it does not <u>neutralize</u> or <u>incorrectly</u> neutralizes when it is sent to a downstream component.				
Community	Extended De	scription						
Related Activities Discussion List Research CWE/SANS Top 25		nis can be used to all		trollable inputs, the generated SQL query can cause those inputs to be interpreted as SQL instead of ordinary ty checks, or to insert additional statements that modify the back-end database, possibly including execution of				
CWSS CWRAF		n has become a com						
T-Shirt	data planes.	nal user base is likely	Common Consequences					
News Calendar Free Newsletter	 Time of Introduction Architecture and Design Implementation Operation 		Scope	Effect				
Compatibility Program			Confidentiality	Technical Impact: Read application data				
Requirements Coverage Claims	Applicable	e Platforms	,					
Representation Compatible Products	Languages			Since SQL databases generally hold sensitive data, loss				
Make a Declaration Contact Us	All Technology (Classes	Access	Technical Impact: Bypass protection mechanism				
Search the Site	Database-Se	rver	Control	If poor SQL commands are used to check user names a				
	✓ Modes of	Introduction						
		s typically appears in		the password.				
	Common Scope	Consequences Effect	Access	Technical Impact: Bypass protection mechanism				
		Technical Impact: Rea		recimical impacts bypass protection mechanism				
		Since SQL database	Control	If authorization information is held in a SQL database, i				
	Control	If poor SQL comma the password.		vulnerability.				
	Access Control	Technical Impact: Byp If authorization info vulnerability.	N	Technical Impact: Modify application data				
	Integrity	Technical Impact: Mod Just as it may be po		Just as it may be possible to read sensitive information				
				· · ·				

MITRE