
Web Security:
Thinking like an Attacker

Christine Cunningham

MIT Lincoln Laboratory

October 2016

This work is sponsored by the Department of the Air Force under Air Force Contract

FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations

are those of the authors and are not necessarily endorsed by the United States

Government.

Web Security- 2

CMC 10/13/16

Web App Development

Software Development Process

Internet

Webapp

End Users

Focus

Traditional

Requirements

•Performance

•Functionality

•Usability

Attackers

“Just think like an attacker”

-Every Manager

End Users

Web Security- 3

CMC 10/13/16

Thinking Like an Attacker –
Where to Begin?

• OWASP Top Ten
provides the most critical
web application security
flaws [11]

• Security Experts Blogs:

– Bruce Schneier on
Security
https://www.schneier.com
/

– Krebs on Security
http://krebsonsecurity.co
m

– FireEye blog
https://www.fireeye.com/
blog.html

OWASP Top 10 for 2013 Attack

Target

Injection Server

Broken Authentication & Session Management Server

Cross-Site Scripting (XSS) Client

Insecure Direct Object References Server

Security Misconfiguration Server

Sensitive Data Exposure Server

Missing Function Level Access Control Server

Cross-Site Request Forgery (CSRF) Client

Using Components with Known Vulnerabilities Server

Invalidated Redirects and Forwards Client

Web Security- 4

CMC 10/13/16

Outline

• Server-Side Attack

• Client-Side Attack

Web Security- 5

CMC 10/13/16

Simple Web Application Architecture

Web Security- 6

CMC 10/13/16

Heartbleed: Introduction

This server-side attack method is targeted at extracting data

from the system component providing secure communication

The Transport

Layer

Security (TLS)

option provides

secure network

communication

Web Security- 7

CMC 10/13/16

Heartbleed: How does it work?

http://xkcd.com/1354

Web Security- 8

CMC 10/13/16

• Build your own web server vulnerable to the exploit

Heartbleed: Practice Execution

Clone the openssl repository

> git clone git://git.openssl.org/openssl.git

> cd openssl

Checkout the latest version vulnerable to the Heartbleed exploit

> git checkout tags/OpenSSL_1_0_1f

Configure and build the source

> ./config

> make

The apps directory contains the resulting executable

> cd apps

Generate a private key

> ./openssl genrsa –out server.pem 1024

Append the self-signed certificate to the localhost

> ./openssl req –new –x509 –key server.pem –subj /CN=localhost >>

server.pem

Start the server

> ./openssl s_server -www

HTTP Server
Apache | IIS | nginx | GWS

Operating System
Linux | Windows

Web Security- 9

CMC 10/13/16

Heartbleed: Practice Execution

Web Security- 10

CMC 10/13/16

Heartbleed: Practice Execution

• Source credit from various
github projects:

– https://github.com/musalba
s/heartbleed-
masstest/blob/master/sslte
st.py

– https://gist.github.com/sh1n
0b1/10100394

Web Security- 11

CMC 10/13/16

Heartbleed: Practice Execution

Execute the code

> Python ssltestv2.py

received heartbeat response with payload size 16384

localhost serving on port 4433 is vulnerable

Web Security- 12

CMC 10/13/16

Heartbleed: Discovery & Exploitation

– Static analysis
Look for unprotected memory access
reads and writes
Consider avenues that have not yet been
explored or exploited

– Dynamic analysis

– Tools
Compiler Tools

Static Analysis Tools

char c[28];

char *bar;

memcpy(c, bar, strlen(bar));

bar = “my string is too long !!!!! \x10\x10\xc0\x42”;

Return Address = \x10\x10\xc0\x42

Intended usage

Input manipulation

Buffer overflow success

Unpatched OpenSSL source

Web Security- 13

CMC 10/13/16

Outline

• Server-Side Attack

• Client-Side Attack

Web Security- 14

CMC 10/13/16

Cross-Site Request Forgery (XSRF):
Illustration

Client Web
Browser

Bankomit.com
Web Server

Session Store

http://www.bankomit.com/login?name=William

Blog post

contains

malicious

script

Malicious Web Server

http://www.bankomit.com/transferfundsto.do?acct=1234567&amt=20000

Session ID=12345 Website trusts
client’s browser,

so executes
request

Web Security- 15

CMC 10/13/16

• XSRF exploits the way that a client’s browser handles sessions

• The browser’s authenticated sessions are used to make requests
as the user to the targeted site

• Example

– Bank-O-MIT allows account transfers with the following:

– User X is logged into Bank-O-MIT

– User X visits malicious site Y with html code:

– Site Y tricked the user’s browser into sending a form to Bank-O-MIT
telling it to transfer $20,000 to account 1234567

– Since user X is currently logged in, Bank-O-MIT is glad to help

• Exploits the trust that a web app has in the visitor’s browser

XSRF: How does it work?

http://www.bankomit.com/transferfundsto.do?acct=1234567&amt=1

Web Security- 16

CMC 10/13/16

XSRF: Practice Execution

• Google Gruyere app
provides vulnerable web
application and tutorial

• Check out
https://google-
gruyere.appspot.com/pa
rt3#3__cross_site_requ
est_forgery

Web Security- 17

CMC 10/13/16

XSRF: Practice Execution

[X]

Web Security- 18

CMC 10/13/16

• User logs into

– User then visits malicious site Y with html code:

– Site Y has malicious code:

– Site Y tricked the user’s browser into sending a form to Google
Gruyere telling it to delete a snippet

– Since user X is currently logged in, Google Gruyere is glad to help

XSRF: Practice Execution

https://visit-my-fake-evil-webpage.com

https://google-gruyere.appspot.com/138901597112

Web Security- 19

CMC 10/13/16

XSRF: Discovery

• Look for forms that do not have a unique token only sent with the form

• Why not read the token value from the site?

– The browser implements a “Same Origin Policy” that permits scripts running on
pages originating from the same site to access each other’s session information
with no specific restrictions, but prevents access to session information on different
sites

– XSRF attacks originate from a different site, so not applicable

Compared URL Outcome

http://www.example.com/dir/page2.html Success

http://username:password@www.example.com/dir2/other.html Success

http://www.example.com:81/dir/other.html Failure

https://www.example.com/dir/other.html Failure

http://en.example.com/dir/other.html Failure

http://example.com/dir/other.html Failure

[9]

Web Security- 20

CMC 10/13/16

• XSRF Token – most common mitigation strategy

• When the user logs in, a randomized string (token) is put on the client’s

form page by the legitimate site as a hidden field and stored server side as

a session variable. Example: AZERTYUHQNWGST

• When a user wishes to perform a transaction that would result in a change

to the server-side state (a non-idempotent request), it submits the form

• The request handler for the non-idempotent request validates that the

submitted token matches the token stored in the session.

– Malicious request: Token is missing or does not match, then the request throws

an error

– Legitimate request: Request is processed

XSRF: Protection

http://www.bankomit.com/transferfundsto.do?acct=1234567&amt=1

http://www.bankomit.com/transferfundsto.do?acct=1234567&amt=1&token=AZERTYUHQNWGST

Web Security- 21

CMC 10/13/16

Summary

• Thinking like an attacker is a valuable skill for assessing software for
security vulnerabilities & for writing more secure code

• Developing this skill takes learning and practice like any other skill

• Delving into different attacks is valuable practice for learning this new
skill

• Some free tools exist that can be used to continue learning how to
exploit web applications

– Google Gruyere

– Damn Vulnerable Web Applications (dvwa).

– For a complete listing of practice tools, OWASP provides a listing under
its Vulnerable Web Application Directory Project [3].

• Attack methods are constantly changing – keep up with them by
monitoring security expert blogs and news reports

Web Security- 22

CMC 10/13/16

References

1. Shostack, “Experiences Threat Modeling at Microsoft”, Modeling Security Workshop, Toulouse, 2008

2. J. Walden, M. Doyle, G.A. Welch, and M. Whelan, “Security of Open Source Web Applications,” Proc. Int’l Workshop Security
Measurements and Metrics, Oct. 2009.

3. R. Siles, S. Bennetts. 22 April 2014. OWASP Vulnerable Web Applications Directory Project.
https://www.owasp.org/index.php/OWASP_Vulnerable_Web_Applications_Directory_Project#tab=Main

4. P. Mutton. 8 April 2014. Half a Million Widely Trusted Websites Vulnerable to Heartbleed Bug.
http://news.netcraft.com/archives/2014/04/08/half-a-million-widely-trusted-websites-vulnerable-to-heartbleed-bug.html

5. C. Williams. 9 April 2014. Anatomy of OpenSSL’s Heartbleed: Just Four Bytes Trigger Horror Bug.
http://www.theregister.co.uk/2014/04/09/heartbleed_explained/

6. D. Wheeler. 21 Feb 2015. How to Prevent the Next Heartbleed. http://www.dwheeler.com/essays/heartbleed.html

7. R. Munroe. April 2014. Heartbleed Explanation. http://xkcd.com/1354/

8. B. Grubb. 9 Oct 2014. Revealed: How Google engineer Neel Mehta uncovered the Heartbleed security bug.
http://www.theage.com.au/it-pro/security-it/revealed-how-google-engineer-neel-mehta-uncovered-the-heartbleed-security-
bug-20141009-113kff.html

9. https://en.wikipedia.org/wiki/Same-origin_policy

10. https://www.owasp.org/index.php/Main_Page

11. https://www.owasp.org/index.php/Top_10_2013-Top_10

https://www.owasp.org/index.php/OWASP_Vulnerable_Web_Applications_Directory_Project
http://news.netcraft.com/archives/2014/04/08/half-a-million-widely-trusted-websites-vulnerable-to-heartbleed-bug.html
http://www.theregister.co.uk/2014/04/09/heartbleed_explained/
http://www.dwheeler.com/essays/heartbleed.html
http://xkcd.com/1354/
http://www.theage.com.au/it-pro/security-it/revealed-how-google-engineer-neel-mehta-uncovered-the-heartbleed-security-bug-20141009-113kff.html
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Top_10_2013-Top_10

