Introduction to Security Networking and Packets

Ming Chow (mchow@cs.tufts.edu)

Twitter: @0xmchow

Learning Objectives

- By the end of this week, you will be able to:
 - 1. Dissect packet captures (PCAPs), network traffic
 - 2. Perform network reconnaissance and port scanning
 - Understand the methods of conducting a distributed denial of service attack (DDoS)

Why Cover Networking and Network Security First?

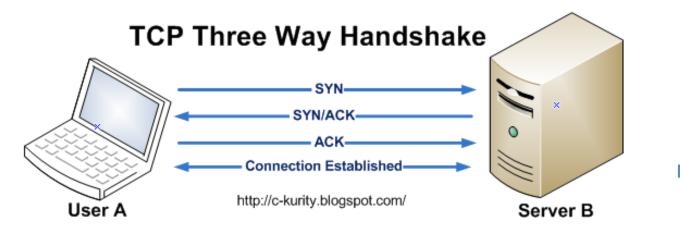
- The "Connectivity" issue (recall Gary McGraw's "Trinity of Trouble")
- Where the "cool stuff" happens
- Critical to understanding the cyber attribution problem

What is the Cyber Attribution Problem?

- Attribution "the action of regarding something as being caused by a person or thing."
- How do you attribute an act of war in traditional warfare?
 - Uniform of attackers
 - Types of weapons attackers used
 - Direction of strike
 - List goes on...
- What is cyber attribution like? See <u>https://twitter.com/thegrugq/status/706545282645757952</u>
 - So why is that?

What is Networking?

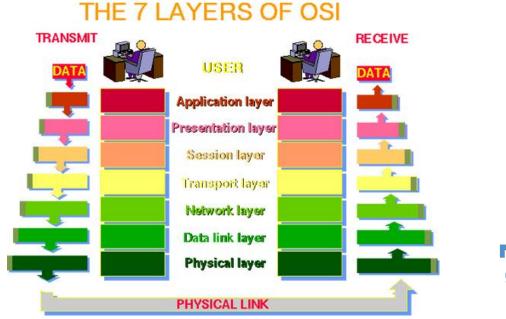
- Two or more computers talking to each other
- Basic definitions:
 - Client A program running on your computer
 - Web browser a client application that displays web pages (e.g., Chrome, Firefox, Microsoft Internet Explorer, Safari, Opera, lynx)
 - Server A computer running web server software on a remote computer; delivers information to other clients
 - Example: Apache HTTP Server
 - Internet The world's largest computer network
 - World Wide Web (or the "web") A collection of web sites, pages, and content around the world
 - Localhost home; this computer
 - **Socket** an endpoint instance defined by an IP address and a port in the context of either a particular TCP connection or the listening state.
 - **Port** a virtualization identifier defining a service endpoint (as distinct from a service instance endpoint aka session identifier); a number
 - Reference: <u>https://stackoverflow.com/questions/152457/what-is-the-difference-between-a-port-and-a-socket</u>


Abridged Analogy Describing How Two Computers Talk to Each Other

Telephone Conversation Between Two People	Conversation Between Two Computers
Telephone number	IP address . We will use IPv4 format extensively where an IP address is in octal format xxx.xxx.xxx where xxx is a number between 0-255 inclusive.
Telephone extension number	Port number - denotes a service provided by a computer. <u>https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml</u>
Telephone lines	Ethernet cables
Telephone book, "Yellow Pages"	Domain Name Systems (DNS)

Abridged Analogy Describing How Two Computers Talk to Each Other (continued)

- The "three-way handshake" method used by TCP set up a TCP/IP connection over an Internet Protocol (IP) based network
 - IMPORTANT: note the TCP flags SYN, SYN/ACK, and ACK as they will come up again
- References:
 - <u>http://www.inetdaemon.com/tutorials/internet/tcp/3-way_handshake.shtml</u>



How Two Computers Talk to Each Other

The OSI model

- OSI Open Systems Interconnection
- Provides standards that allow hardware to focus on one particular aspect of communication that applies to them and ignore others

The Seven Layers of the OSI Model

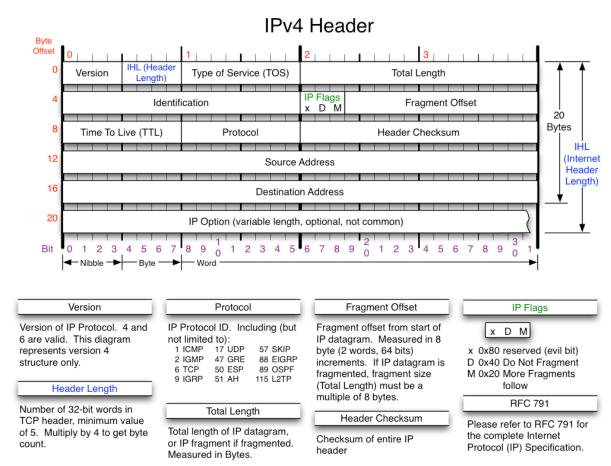
- **1. Physical** Lowest level, the bit level; primary role is communicating raw bit streams over physical medium (e.g., Ethernet cable and card, "wires")
- 2. Data link Transferring data between two points connected by a physical layer; provides high level functions such as error correction and flow control (e.g., ARP, Ethernet)
- **3.** Network Middle ground; pass information between the lower and higher layers; provides addressing and routing (e.g., IP, ICMP) --delivery is NOT guaranteed
- 4. **Transport** Provides transparent and reliable transfer of data between systems, including acknowledgement and segmentation (e.g., TCP, UDP)
- 5. Session Establishes and maintains connections between network applications
- 6. **Presentation** Allows for things like encryption and data compression (e.g., XML)
- 7. Application The highest level interfaces, the services that you use on the Internet

Analogy to Understand the OSI Model via the US Postal Service

- **Physical** The USPS' trucks, trains, and planes: this is how the letters actually get from point A to point B.
- **Data-link** The envelope: you can't just put a handwritten letter in a mailbox and expect it to be sent somewhere.
- **Network** The address: the USPS needs to know where to deliver the letter. This establishes a connection between two residences.
- **Transport** Your name on the envelope: once it gets inside your house, it needs to be given to the correct person.
- Session The standard letter format: this includes dating the letters, saying "dear so-and-so" and "yours truly."
- **Presentation** The body of the letter itself: let's make sure both parties are writing in English.
- **Application** The collection of letters exchanged: the point of the previous six layers was to enable the pen pal relationship between two people.
- We will focus on the Network, Transport, and Application layers extensively
- Source: https://www.quora.com/Can-you-explain-OSI-layers-and-TCP-IP-in-laymans-terms

Application Layer

- The famous and insecure ones by default, data all unencrypted:
 - DNS Domain Name Server (DNS)
 - Port 53
 - IMAP (Internet Message Access Protocol)
 - Email
 - Port 143
 - FTP (File Transfer Protocol)
 - File transfer
 - Port 21
 - HTTP (Hypertext Transfer Protocol)
 - The foundation of data communication for the World Wide Web
 - Port 80
 - Telnet
 - Protocol that allows you to connect to remote computers
 - Port 23
 - POP (Post Office Protocol)
 - Email
 - Port 110
 - Current version is 3 thus protocol is now known as POP3


Internet Protocol (IP)

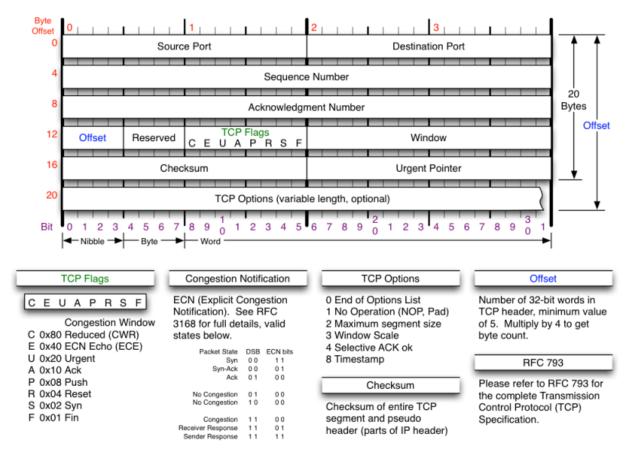
- On the Network layer of OSI model
- Provides a connectionless, unreliable, best-effort datagram delivery service (delivery, integrity, ordering, non- duplication, and bandwidth is not guaranteed)
- RFC 791: <u>http://www.ietf.org/rfc/rfc791.txt</u>
 - RFC Request For Comments, a publication from the Internet Engineering Task Force (IETF) and the Internet Society (ISOC), the principal technical development and standards-setting bodies for the Internet.

IP Header

Source and reference: <u>https://nmap.org/book/tcpip-ref.html</u>

school of engineering Computer Science

Copyright 2008 - Matt Baxter - mjb@fatpipe.org - www.fatpipe.org/~mjb/Drawings/


Transmission Control Protocol (TCP)

- Guarantees delivery of data in proper order thanks to IP protocol; thus, it is commonly known as TCP/IP
- Transparent, bidirectional, and reliable
- On the Transport layer of OSI model
- RFC 793: <u>http://www.ietf.org/rfc/rfc793.txt</u>

TCP Header

Source and reference: <u>https://nmap.org/book/tcpip-ref.html</u>

Internet Control Message Protocol (ICMP)

- On Network layer of OSI model
- Testing and debugging protocol
- Used to determine whether a remote host is reachable
 - Thus generally speaking, ICMP is NOT used to exchange data between systems
- Other uses: inform about traffic overloads, obtain the network mask at boot time for diskless systems, synchronize clock
- Exchange control and error messages about the delivery of IP datagrams
 - Messages: Echo (request), Reply (response), Error
- RFC 792: <u>http://www.ietf.org/rfc/rfc792.txt</u>

Ping

- Utility to send ICMP ECHO REQUEST packets to network hosts
 - More on what a packet is later
- Built in to almost all operating systems (e.g., Windows, Linux, Mac OS X)
- Documentation on Linux or Unix-based system: man ping
- Basic usage: ping <host>
 - Example: ping google.com
- What you cannot do with ping: check for open ports on a remote system

User Datagram Protocol (UDP)

- On Transport layer of OSI model
- Relies on IP to provide a connectionless, unreliable, best-effort datagram delivery service.
- In other words, may be dropped before reaching targets a.k.a., fast
- Delivery, integrity, non-duplication, ordering, and bandwidth is not guaranteed
- Unlike TCP/IP, no handshaking!
- No sequence numbers
- Usage: DNS, streaming videos, video games
- RFC 768: <u>https://www.ietf.org/rfc/rfc768.txt</u>

Ethernet

- On Data Link layer of OSI model
- A network protocol that controls how data is transmitted over a local area network (LAN)
- Addressing: Media Access Control (MAC) address
 - A unique identifier assigned to network interfaces (e.g., your wireless network hardware card) for communications at the data link layer of a network segment
 - 48 bits in the format XX:XX:XX:XX:XX:XX
 - Example: 09:45:FA:07:22:23

Address Resolution Protocol (ARP)

- On Data Link layer of OSI model
- The idea of ARP: get Ethernet address of host with IP address (very much like delivering mail to an office building)
 - ARP request message, think of it this way: "Hey who has this IP? If it's you, please respond and tell me your MAC address"
 - ARP reply message, think of it this way: "This is my MAC address and I have this IP address"
- Host A wants to know the hardware address associated with IP address of host B
- A broadcasts a special message to all the hosts on the same physical link
- Host B answers with a message containing its own link-level address
- A keeps the answer in its cache (20 minutes)
- To optimize traffic, when A sends its request, A includes its own IP address
- The receiver of the ARP request will cache the requester mapping
- RFC 826: <u>https://www.ietf.org/rfc/rfc826.txt</u>
- Reference: <u>https://www.homenethowto.com/switching/arp-mac-ip/</u>
- Tools: arp

Domain Name Systems (DNS)

- Analogy: telephone book for the Internet; mapping of IP addresses to domain names and vice versa
- On Application layer of OSI model
- The name space is hierarchically divided in domains
- Each domain is managed by a name server
 - Servers are responsible for mapping names in a zone
- Root servers are associated with the top of the hierarchy and dispatch queries to the appropriate domains
- A server that cannot answer a query directly forwards the query up in the hierarchy.
- The results are maintained in a local cache for a limited time (which can range from minutes to days).
- Queries can be recursive
- DNS uses mostly UDP and sometimes TCP for long queries and zone transfers between servers (port 53)
- Associated RFCs: <u>https://en.wikipedia.org/wiki/Domain_Name_System#RFC_documents</u>
- References:
 - <u>https://www.verisign.com/en_US/website-presence/online/how-dns-works/index.xhtml</u>
 - <u>https://dyn.com/blog/dns-why-its-important-how-it-works/</u>
- Tools: dig, host, nslookup

So far...

- ...you have learned about the OSI model
- ...you have learned about the TCP three way handshake
- ...you have seen headers, network protocols, etc.
- There is a lot going on here...
- How can you comprehend all this tangibly? How can one visualize what's going on?
- Next steps: packets, PCAPs, and Wireshark

Packet

- Packet unit of data
- A data stream (e.g., video, a web page) is comprised of many packets
- In general, a packet contains the following information:
 - Source and destination IP addresses (in IP layer)
 - Source and destination port number (in TCP layer)
 - MAC address (in Data Link layer)
 - Time To Live (TTL; in IP layer)
 - Payload
- Thus, a packet contains implementations of all the protocol layers (including TCP, IP, application, data link)
 - Encapsulation model
 - Think of an onion

A .pcap File

- The common file extension for packet captures and is commonly used in many applications such as Wireshark, ettercap, tcpdump
- A 100 MB PCAP file contains tens of thousands of packets

Tool: Wireshark

- Graphical and extensive packet analyzer
- One of the most important tools in the field
- Very similar to tcpdump
- Open source and free
- Features include filtering, reconstructing conversations, reconstructing files based on packets
- <u>https://www.wireshark.org/</u>

Wireshark (continued)

A	Apply a display filter	<೫/>				Expression +
No.	Time	Source	Destination	Protocol	Length Info	
	48 6.999290	192.168.1.7	192.168.1.4	TCP	66 53605 → 21 [ACK] Seq=1 Ack=95 Win=131672 Len=0 TSval=918047331 TSecr=283183	
	49 6.999494	192.168.1.7	192.168.1.4	FTP	79 Request: USER broken	
	50 6.999502	192.168.1.4	192.168.1.7	TCP	66 21 → 53605 [ACK] Seq=95 Ack=14 Win=29056 Len=0 TSval=283183 TSecr=918047331	
	51 6.999593	192.168.1.4	192.168.1.7	FTP	100 Response: 331 Please specify the password.	
	52 6.999689	192.168.1.7	192.168.1.4	TCP	66 53605 → 21 [ACK] Seq=14 Ack=129 Win=131640 Len=0 TSval=918047331 TSecr=283183	
	53 7.025624	45.127.112.2	192.168.1.4	NTP	90 NTP Version 4, server	
	54 8.609355	192.168.1.7	192.0.73.2	TCP	60 53584 → 443 [ACK] Seq=1 Ack=1 Win=8181 Len=0	
	55 9.110650	192.168.1.7	192.0.73.2	TCP	60 53589 → 443 [ACK] Seq=1 Ack=1 Win=8192 Len=0	
	56 9.110660	192.168.1.7	192.0.73.2	TCP	60 53588 → 443 [ACK] Seq=1 Ack=1 Win=8181 Len=0	
	57 9.110661	192.168.1.7	192.0.73.2	TCP	60 53587 → 443 [ACK] Seq=1 Ack=1 Win=8181 Len=0	
	58 9.110661	192.168.1.7	192.0.73.2	TCP	60 53586 → 443 [ACK] Seq=1 Ack=1 Win=8181 Len=0	
	59 9.110662	192.168.1.7	192.0.73.2	TCP	60 53585 → 443 [ACK] Seq=1 Ack=1 Win=8181 Len=0	
	60 9.914894	192.168.1.7	192.168.1.4	FTP	77 Request: PASS r3wt	
	61 9.940368	192.168.1.4	192.168.1.7	FTP	89 Response: 230 Login successful.	
	62 9.940621	192.168.1.7	192.168.1.4	TCP	66 53605 → 21 [ACK] Seq=25 Ack=152 Win=131616 Len=0 TSval=918050265 TSecr=283918	
	63 9.940695	192.168.1.7	192.168.1.4	FTP	72 Request: SYST	
	64 9.940742	192.168.1.4	192.168.1.7	FTP	85 Response: 215 UNIX Type: L8	

set1.pcap

Frame 1: 90 bytes on wire (720 bits), 90 bytes captured (720 bits)

▶ Ethernet II, Src: Vmware_c6:be:93 (00:0c:29:c6:be:93), Dst: Actionte_6d:c7:27 (f8:e4:fb:6d:c7:27)

▶ Internet Protocol Version 4, Src: 192.168.1.4, Dst: 209.242.224.117

▶ User Datagram Protocol, Src Port: 123, Dst Port: 123

▶ Network Time Protocol (NTP Version 4, client)

0000	f8	e4	fb	6d	с7	27	00	0c	29	c6	be	93	08	00	45	b8	m.')E.
0010	00	4c	d0	b9	40	00	40	11	f5	1a	с0	a8	01	04	d1	f2	.L@.@
0020	e0	75	00	7b	00	7b	00	38	74	5e	23	03	07	e8	00	00	.u.{.{.8 t^#
0030	06	0a	00	00	0b	a6	2d	7f	70	02	db	72	23	e7	e7	b2	–. pr#
0040	ba	b4	db	72	24	27	e6	e5	6c	bd	db	72	24	27	ed	82	r\$' lr\$'
0050	66	a3	db	72	24	ab	e3	48	42	1b							fr\$H B.

Tool: tshark

- Dumps and analyzes network traffic
- Command-line-based Wireshark
- Installed with Wireshark
- The manual: man tshark
- Example, list the hosts in a PCAP file:
 - tshark -r file.pcap -q -z hosts, ipv4

Tool: tshark (continued)

	\$ tshark -r set3.pcap -q -z hosts,ipv4
<pre># TShark hosts</pre>	
#	
# Host data gat	hered from set3.pcap
Ŭ	
50.22.4.220	api.south.kontagent.net
17.172.224.47	apple.com
199.59.148.20	api.twitter.com
52.10.76.66	external-nginx-api.prod.us-west2.twitch.tv
23.21.212.107	data-collector-linkedin-prod-1143471378.us-east-1.elb.amazonaws
68.67.129.117	ib.anycast.adnxs.com
54.235.163.76	elb051356-548148482.us-east-1.elb.amazonaws.com
17.167.193.235	gsp36-ssl.ls-apple.com.akadns.net
222.239.85.206	upload.inven.co.kr
17.172.232.166	<pre>4.courier-sandbox-push-apple.com.akadns.net</pre>
52.7.6.170	api.shopkeepapp.com
54.148.244.104	external-nginx-api.prod.us-west2.twitch.tv
58.251.139.219	imap.qq.com
17.172.232.190	<pre>4.courier-sandbox-push-apple.com.akadns.net</pre>
17.134.126.30	gsp-ssl.ls-apple.com.akadns.net
52.21.62.183	elb-ad-01-659338009.us-east-1.elb.amazonaws.com
	api.south.kontagent.net
169.46.12.66	api.south.kontagent.net
108.168.211.135	
169.46.12.69	api.south.kontagent.net
199.59.149.230	twitter.com
54.183.107.128	aerios.cyngn.com
169.46.12.72	api.south.kontagent.net
104.25.56.25	cdn.inspectlet.com

Tool: tcpdump

- A packet analyzer that runs via command line
- To run: sudo tcpdump -i <INTERFACE>
- The manual: man tcpdump
- Cheat sheet via SANS Institute: <u>https://www.sans.org/security-resources/tcpip.pdf</u>
- Example: reading a PCAP file
 - tcpdump -r file.pcap
- Example: splitting a PCAP file into smaller ones (e.g., 10 MB)
 - tcpdump -r old_file.pcap -w new_files__C_10

school of engineering Computer Science

Lab: Packet Sleuth

The Next Time: Attacking Networks

- Sniffing
- Network reconnaissance
- Denial of Service (DoS)
- Impersonation (spoofing)
- Hijacking (information access, delivery tampering)

