
Introduction to Security
Cryptography

Ming Chow (mchow@cs.tufts.edu)
Twitter: @0xmchow

mailto:mchow@cs.tufts.edu)

Learning Objectives

• By the end of this week, you will be able to:
• Understand the difference between symmetric and asymmetric cryptography
• Understand and use one-way hash functions
• Understand how Transport Layer Security (TLS) works
• Understand how and how not to store users' passwords

Why Cryptography?

• To put it quite simply, it is the backbone of Cyber Security, critical for
protecting information (confidentiality and integrity)
• Week 1 on networking and attacking networks alluded to the

importance of Cryptography
• Imagine a world without Cryptography. Imagine your usernames, passwords,

credit card numbers, messages, secrets, account details, personal
information, emails, etc. were all transmitted over a computer network in
plaintext, unencrypted

Warning

• This week is not a comprehensive study on Cryptography
• Cryptography stands as a course and field of its own
• While Cryptography is critical in Cyber Security, Cryptography and

Cyber Security are not the same. Some academic institutions still
teach Cyber Security as Cryptography. There is a lot more to Cyber
Security than Cryptography.

Definitions

• Cryptography - The process of communicating secretly through the use of
cipher
• Cryptanalysis - The process of cracking or deciphering; code breaking
• Cryptology - The study of cryptography or cryptanalysis
• Cleartext / plaintext - What you are reading now
• Encrypt - convert information or data into code to prevent unauthorized

access
• Decrypt – convert an encoded or unclear message into something

intelligible, to plaintext
• Cipher - An algorithm to perform encryption and/or decryption
• Cryptosystem - Suite of algorithms to perform encryption and/or

decryption

The Golden Rule

• “Don’t roll your own crypto”
• The reason: https://security.stackexchange.com/questions/18197/why-

shouldnt-we-roll-our-own
• “Anyone, from the most clueless amateur to the best cryptographer, can

create an algorithm that he himself can't break. It's not even hard. What is
hard is creating an algorithm that no one else can break, even after years
of analysis. And the only way to prove that is to subject the algorithm to
years of analysis by the best cryptographers around.” –Bruce Schneier
• Snake oil: https://www.schneier.com/crypto-

gram/archives/1999/0215.html#snakeoil

https://security.stackexchange.com/questions/18197/why-shouldnt-we-roll-our-own
https://www.schneier.com/crypto-gram/archives/1999/0215.html

Ancient History: Caesar Cipher

• A substitution cipher
• “Each letter in the original message (plaintext)

is replaced with a letter corresponding to a
certain number of letters up or down in the
alphabet.”

• In this way, a message that initially was quite
readable, ends up in a form that can not be
understood at a simple glance.

• Source:
https://learncryptography.com/classical-
encryption/caesar-cipher

• The purpose of this: what if a messenger for
Julius Caesar got mugged or murdered and
the message that was supposed to be
delivered to another party got intercepted or
stolen by enemy?

https://learncryptography.com/classical-encryption/caesar-cipher

Security of a Cryptosystem

• The only perfectly secure algorithm is the One-Time Pad
• Is any crypto algorithm perfectly secure?
• Tradeoff 1: the cost of breaking a cipher exceeds the value of the

encrypted information
• Tradeoff 2: the time required to break the cipher exceeds the useful

lifetime of the information
• Very difficult to estimate cost and time required to break a cipher
• There is always brute force
• ...and then there is plain-old stealing or just asking for it

One-Time Pad (OTP)

• Invented in 1917
• Impossible to crack
• The secret key (the cipher), with random data, must be the same length as

the plaintext
• Assume "A" = 0, "B" = 1, "C" = 2, etc.
• Simple to use: just XOR, modular addition

• https://www.khanacademy.org/computing/computer-
science/cryptography/modarithmetic/e/modular-addition

• Encryption: addition, mod 26
• Decryption: subtraction, if result is negative, add 26 and mod 26
• Rather impractical

https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/e/modular-addition

Algorithms

• Hash functions - one way encryption, no decryption thus no secret key
• MD5 (insecure)
• SHA1 (insecure), SHA256, SHA512

• Symmetric - single key for encryption and decryption
• DES
• AES
• RC4

• Asymmetric a.k.a., public key - uses two different keys: one public (for
encryption) and one private (for decryption)
• Diffie-Hellman
• RSA

Base64
• NOT encryption!
• An encoding scheme of representing binary data using only printable (text) characters

• Example: an image (JPG, PNG) contains binary data. Convert the binary data to text characters. https://www.base64-
image.de/

• RFC 4648: https://www.ietf.org/rfc/rfc4648.txt
• Operations: encode and decode

• https://www.base64decode.org/
• Example: hello encoded in Base64 is aGVsbG8=. The “=” at the end of encoding serves as padding.

• Many programming languages include a Base64 library
• Has an important place in Cyber Security

• Used quite a bit, including for HTTP Basic Authentication

• References:
• https://en.wikipedia.org/wiki/Basic_access_authentication
• https://stackoverflow.com/questions/201479/what-is-base-64-encoding-used-for
• https://stackoverflow.com/questions/4070693/what-is-the-purpose-of-base-64-encoding-and-why-it-used-in-http-basic-

authentica

https://www.base64-image.de/
https://www.ietf.org/rfc/rfc4648.txt
https://www.base64decode.org/
https://stackoverflow.com/questions/6916805/why-does-a-base64-encoded-string-have-an-sign-at-the-end
https://en.wikipedia.org/wiki/Basic_access_authentication
https://stackoverflow.com/questions/201479/what-is-base-64-encoding-used-for
https://stackoverflow.com/questions/4070693/what-is-the-purpose-of-base-64-encoding-and-why-it-used-in-http-basic-authentica

Hash Functions

• Maps a variable length string of data to produce a fixed-length output
in deterministic, public, and random manner
• No secret key
• Properties of a perfect hash function (recall properties of a hash

function for hash tables in a Data Structures course):
• One-way: cannot decrypt
• No collisions: two unique strings cannot produce the same result
• Randomness
• Unfeasible to produce the whole hash space (pre-image resistance)
• Given a hash result, unfeasible to produce the string

Hash Functions: Tradeoffs

• Strengths:
• Verifying integrity

• Weaknesses:
• MD5 (128-bit hash value) is broken --not collision-resistant (two researchers

created two files that shared the same hash value). Read:
• http://www.cs.colorado.edu/~jrblack/papers/md5e-full.pdf
• http://eprint.iacr.org/2004/199.pdf

• SHA1 (160-bit hash value) is broken –badly; big news in February 2017
• http://www.schneier.com/blog/archives/2005/02/sha1_broken.html,
• http://www.schneier.com/blog/archives/2005/02/cryptanalysis_o.html
• https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html
• https://shattered.io/

http://www.cs.colorado.edu/~jrblack/papers/md5e-full.pdf
http://eprint.iacr.org/2004/199.pdf
http://www.schneier.com/blog/archives/2005/02/sha1_broken.html
http://www.schneier.com/blog/archives/2005/02/cryptanalysis_o.html
https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html
https://shattered.io/

Hash Function Applications

• Password storage
• Checksum of software packages
• Digital signatures
• Commits in Git which use SHA-1
• https://gist.github.com/masak/2415865

https://gist.github.com/masak/2415865

Example: Verifying the integrity of a
download
1. Let’s download the popular VLC Media Player for Windows (64-bit) at
https://get.videolan.org/vlc/2.2.6/win64/vlc-2.2.6-win64.exe

2. Most software downloads will provide a checksum. For this version
of VLC, we see SHA-256 checksum:
21670eae2c8041d6f26667c664f97e8931f5977225bcc3c146902beb263
05ed2

https://get.videolan.org/vlc/2.2.6/win64/vlc-2.2.6-win64.exe

Example: Verifying the integrity of a
download (continued)
3. On Linux or Mac OS X terminal, run the following in the folder where
the vlc-2.2.6-win64.exe file is: shasum -a 256 vlc-2.2.6-
win64.exe. Result should match the checksum provided on the
website. If result does NOT match, either a tampered download or
corrupted download –both not good!

Symmetric Algorithms
• One key for encryption and decryption
• Let K = secret key (think password), C = Ciphertext, P = Plaintext, E = Encrypt function, D = Decrypt function
• C = Ek(P)
• P = Dk(C)
• Example: One-Time Pad
• Applications

• Password protect a ZIP file –which uses AES: https://security.stackexchange.com/questions/35818/are-password-protected-
zip-files-secure

• Strengths:
• Modified key K will result in garbage plaintext in decryption
• Fast!

• Weaknesses:
• Those who know K can participate in communications (eavesdropping)
• Impersonation attack if attacker knows K
• Not good for authenticity

https://security.stackexchange.com/questions/35818/are-password-protected-zip-files-secure

Asymmetric Algorithms a.k.a. Public Key
Algorithms
• Two keys

• Public key: which anyone can have, can be distributed publicly
• Private key: only you should have

• How it works:
• Alice and Bob agree on a public-key cryptosystem
• Alice and Bob have their own public and private keys
• Alice gives Bob her public key
• Bob encrypts message with Alice's public key Alice decrypts the message with her private key
• Even better: key signing (encrypt message with own private key)

• Arguably the most popular algorithm: RSA. Walkthough: http://www.di-mgt.com.au/rsa_alg.html
• Strengths:

• Public key can be distributed any way possible
• Confidentiality: only holder of private key can decrypt message
• Integrity: any modification of the message would be revealed when decrypting
• Non repudiation: Bob can prove to a third party that Alice is the originator of the message

• Weakness:
• No authentication: anyone can encrypt a message given a public key
• Man-in-the-Middle (MitM) attack

http://www.di-mgt.com.au/rsa_alg.html

Asymmetric Algorithms Applications

• Secure Socket Layer (SSL) now Transport Layer Security (TLS)
• SSH and SSH Keys

• Why: “SSH keys provide a more secure way of logging into a virtual private server with SSH
than using a password alone. While a password can eventually be cracked with a brute force
attack, SSH keys are nearly impossible to decipher by brute force alone. Generating a key pair
provides you with two long string of characters: a public and a private key. You can place the
public key on any server, and then unlock it by connecting to it with a client that already has
the private key. When the two match up, the system unlocks without the need for a
password. You can increase security even more by protecting the private key with a
passphrase.” https://www.digitalocean.com/community/tutorials/how-to-set-up-ssh-keys--2

• Generating a new SSH key for GitHub: https://help.github.com/articles/connecting-to-github-
with-ssh/

• PGP (Pretty Good Privacy)
• GPG formerly known as OpenPGP
• Bitcoin

https://www.digitalocean.com/community/tutorials/how-to-set-up-ssh-keys--2
https://help.github.com/articles/connecting-to-github-with-ssh/

Passwords and Password Cracking

• Question: How long is your
password good for? 30 days? 60
days? 90 days?
• Answer: As long as it is not broken
• The bottom line: it will only be a

matter of when, not if, your
password will be broken
• Source for photo:

https://www.sans.org/blog/how-
long-to-crack-a-password-
spreadsheet/

https://www.sans.org/blog/how-long-to-crack-a-password-spreadsheet/

Cracking Passwords on a Linux System

• Two files of interest on a typical Linux box:
• /etc/passwd - Contains users' information but no encrypted password;

required for login
• /etc/shadow - Contains users' passwords (encrypted) with additional

details relating to the password (see http://tldp.org/LDP/lame/LAME/linux-
admin-made-easy/shadow-file-formats.html for more details)

• Methods:
• Brute-force
• Wordlists
• Rainbow tables. See http://project-rainbowcrack.com/ for example.

http://tldp.org/LDP/lame/LAME/linux-admin-made-easy/shadow-file-formats.html
http://project-rainbowcrack.com/

Tool: John the Ripper (JtR)
• http://www.openwall.com/john/
• Step 1: merge the /etc/passwd and /etc/shadow files via unshadow tool provided with JtR, save

result to a text file (e.g., crackme.txt)
• unshadow passwd shadow > crackme.txt

• Format of a password hash in an unshadowed file:
• $algorithm$salt$hash where $algorithm$ means one of the following:

• 1 = MD5
• 2 = Blowfish
• 5 = SHA-256
• 6 = SHA-512

• Example:
msfadmin:1XN10Zj2c$Rt/zzCW3mLtUWA.ihZjA5/:1000:1000:msfadmin,,,:/home/msfadmin:/bi
n/bash

• Password Salt - random data as an additional input to a one-way function that hashes a password or passphrase. The
primary function of a salt is to defend against dictionary attacks or a pre-computed rainbow table attack. In other words, to
make a common password uncommon.

• Step 2: run john crackme.txt to start cracking passwords
• “If valid password files are specified but no options are given, John will go through the default selection of cracking modes

with their default settings.” http://www.openwall.com/john/doc/OPTIONS.shtml

http://www.openwall.com/john/
http://www.openwall.com/john/doc/OPTIONS.shtml

Cracking Passwords Using Wordlists

• Daniel Miessler maintains a fantastic set of wordlists and other lists at
https://github.com/danielmiessler/SecLists
• Wordlist mode in JtR: john --wordlist=<FILE>
crackme.txt

https://github.com/danielmiessler/SecLists

Additional Passwords Crackers

• L0phtCrack (commercial; http://www.l0phtcrack.com/)
• Cain & Abel (http://www.oxid.it/cain.html)
• Hashcat (https://hashcat.net/hashcat/)
• THC Hydra (free and open source)

http://www.l0phtcrack.com/)
http://www.oxid.it/cain.html)
https://hashcat.net/hashcat/)

Transport Layer Security (TLS)

• Why? HTTPS is HTTP inside of a TLS session
• Uses BOTH symmetric and asymmetric crypto
• Secure communications between two parties over a network
• On top of TCP
• Different port numbers used for TLS connection. Port 443 for HTTPS
• Part 1: Data between two parties encrypted via symmetric crypto. Why? Speed
• Part 2: Identity of communicating parties identified via asymmetric crypto
• Connection integrity via message integrity check using a message authentication code
• Digital certificates - assert the online identities of individuals, computers, and other

entities on a network
• They are issued by certification authorities (CAs) that must validate the identity of the certificate-holder both before

the certificate is issued and when the certificate is used.
• Specification: https://technet.microsoft.com/en-us/library/cc776447(v=ws.10).aspx

https://technet.microsoft.com/en-us/library/cc776447(v=ws.10).aspx

TLS Process

1. Client connects to TLS-enabled server. Client requesting a secure connection
and presents a list of supported cipher suites (ciphers and hash functions).

2. The server checks what the highest SSL/TLS version is that is supported by
them both, picks a ciphersuite from one of the client's options (if it supports
one), and optionally picks a compression method.

3. The server sends back its identification via digital certificate (THIS MAY NOT
HAPPEN)

4. Client confirms validity of certificate --or NOT!
5. Both the server and the client can now compute the session key (or shared

secret) for the symmetric encryption and decryption of the data. This
computation of the session key is known as Diffie-Hellman key exchange.

6. "The client tells the server that from now on, all communication will be
encrypted, and sends an encrypted and authenticated message to the server."

Diffie-Hellman Key Exchange

• The idea: two parties (say Alice and
Bob --tradition) exchanging
cryptographic keys (or shared
secret) via public and insecure
channel to use to do further
encryption
• Explanation in plain English:

https://security.stackexchange.com
/questions/45963/diffie-hellman-
key-exchange-in-plain-english
• Explanation via “paint analogy”

(image source: Wikipedia)

https://security.stackexchange.com/questions/45963/diffie-hellman-key-exchange-in-plain-english

References on TLS

• https://security.stackexchange.com/questions/20803/how-does-ssl-
tls-work
• https://stackoverflow.com/questions/788808/how-do-digital-

certificates-work-when-used-for-securing-websites-using-ssl
• http://security.stackexchange.com/questions/45963/diffie-hellman-

key-exchange-in-plain-english

https://security.stackexchange.com/questions/20803/how-does-ssl-tls-work
https://stackoverflow.com/questions/788808/how-do-digital-certificates-work-when-used-for-securing-websites-using-ssl
http://security.stackexchange.com/questions/45963/diffie-hellman-key-exchange-in-plain-english

