
Introduction to Security
Static and Dynamic Analysis

Ming Chow (mchow@cs.tufts.edu)
Twitter: @0xmchow

mailto:mchow@cs.tufts.edu)


Learning Objectives

• By the end of this week, you will be able to:
• Use static analysis software to identify vulnerabilities in a software
• Understand the difference between static and dynamic analysis



Static Analysis

• Also known as static code analysis
• No execution of program
• Rule based
• Full code coverage
• Will catch bugs in source code such as using insecure or unsafe functions
• Binary static analysis: black box, no code
• Code: white box , given source code
• Examples: grep, lint, Coverity (commercial), Fortify (commercial), Veracode

(commercial)
• Reference: https://www.veracode.com/products/static-analysis-sast/static-

code-analysis

https://www.veracode.com/products/static-analysis-sast/static-code-analysis


Tool: JSLint (Lint for JavaScript)

• http://www.jslint.com/

http://www.jslint.com/


A Glance at Static Analysis Techniques

1. Data flow analysis
• Collect runtime info about data while in a static state
• Basic block (the code), control flow, control path

2. Control graph
• Node => block
• Edges => jumps / paths

3. Taint Analysis (also Deterministic Finite Automaton)
• Identify variables that have been tainted
• Used vulnerable functions known as sink

4. Lexical analysis
• code => tokens  (e.g., /* gets */)



Strengths and Weaknesses of Static Analysis

• Strengths:
• Find vulnerabilities with high confidence

• Weaknesses:
• Many false positives or false negatives can be generated
• Can't find configuration issues
• Can you prove findings are actual vulnerabilities?



Dynamic Analysis

• System execution; run-time
• Trial and error
• Detect dependencies
• Deal with real runtime variables
• Based on automated tests, user interactions
• No guarantee of full coverage of source
• Example: valgrind – for memory debugging, memory leak detection, 

and profiling. http://valgrind.org/

http://valgrind.org/

