
Veracode Detailed Report

Application Security Report
As of 27 Oct 2016
Prepared for: Tufts University
Prepared on: October 27, 2016
Application: dejaview-android
Industry: Education
Business Criticality: BC2 (Low)
Required Analysis: Any
Type(s) of Analysis Conducted: Static
Scope of Static Scan: 1 of 1 Modules Analyzed

Inside This Report
Executive Summary 1

Summary of Flaws by Severity 1

Action Items 1

Flaw Types by Category 2

Policy Summary 3

Findings & Recommendations 4

Methodology

© 2016 Veracode, Inc. Tufts University and Veracode Confidential

65 Network Drive, Burlington, MA 01803 Tel.+1.339.674.2500 Fax.+1.339.674.2502 URL:http://www.veracode.com

While every precaution has been taken in the preparation of this document, Veracode, Inc. assumes no responsibility for errors, omissions, or for
damages resulting from the use of the information herein. The Veracode platform uses static and/or dynamic analysis techniques to discover
potentially exploitable flaws. Due to the nature of software security testing, the lack of discoverable flaws does not mean the software is 100%
secure.

Scans Included in Report

Executive Summary
This report contains a summary of the security flaws identified in the application using automated static, automated dynamic and/or

manual security analysis techniques. This is useful for understanding the overall security quality of an individual application or for

comparisons between applications.

Veracode Detailed Report

Application Security Report
As of 27 Oct 2016

Veracode Level: VL3
Rated: Oct 27, 2016

Application: dejaview-android Business Criticality: Low
Target Level: VL2 Published Rating: A

Static Scan Dynamic Scan Manual Scan

27 Oct 2016 Static
Score: 97
Completed: 10/27/16

Not Included in Report Not Included in Report

Application Business Criticality: BC2 (Low)

Impacts:Operational Risk (N/A), Financial Loss (Low)

An application's business criticality is determined by business
risk factors such as: reputation damage, financial loss,
operational risk, sensitive information disclosure, personal safety,
and legal violations. The Veracode Level and required
assessment techniques are selected based on the policy
assigned to the application.

Analyses Performed vs. Required

A
n

y

S
ta

ti
c

D
yn

am
ic

M
an

u
al

Performed:

Required:

Summary of Flaws Found by Severity

Action Items:
Veracode recommends the following approaches ranging from the most basic to the strong security measures that a vendor can
undertake to increase the overall security level of the application.
Required Analysis

Your policy requires periodic analysis of any type. Your next analysis must be completed by 4/27/17. Please submit your
application for analysis by the deadline and remediate the required detected flaws to conform to your assigned policy.

Flaw Severities

Very High severity flaws and above must be fixed for policy compliance.

Longer Timeframe (6 - 12 months)

Certify that software engineers have been trained on application security principles and practices.

Veracode Detailed Report prepared for Tufts University – Oct 27, 2016

© 2016 Veracode, Inc. Tufts University and Veracode Confidential

65 Network Drive, Burlington, MA 01803 Tel.+1.339.674.2500 Fax.+1.339.674.2502 URL:http://www.veracode.com1

Scope of Static Scan
It is important to note that this application may include additional modules which were not included in this analysis. We recommend that you contact the vendor to determine

whether all modules have been included.

Engine Version: 102039

The following modules were included in the application scan:

Flaw Types by Severity and Category

Module Name Compiler Operating Environment Engine
Version

app-debug.apk Android Android 102039

Static Scan
Security Quality Score =

97

Very High 0

High 0

Medium 6

CRLF Injection 6

Low 3

Code Quality 1

Information Leakage 2

Very Low 0

Informational 0

Total 9

Veracode Detailed Report prepared for Tufts University – Oct 27, 2016

© 2016 Veracode, Inc. Tufts University and Veracode Confidential

65 Network Drive, Burlington, MA 01803 Tel.+1.339.674.2500 Fax.+1.339.674.2502 URL:http://www.veracode.com2

Policy Evaluation
Policy Name: Veracode Recommended Low

Revision: 1

Policy Status: Pass

Description

Veracode provides default policies to make it easier for organizations to begin measuring their applications against policies. Veracode

Recommended Policies are available for customers as an option when they are ready to move beyond the initial bar set by the

Veracode Transitional Policies. The policies are based on the Veracode Level definitions.

Rules

Scan Requirements

Remediation

Rule type Requirement Findings Status

Minimum Veracode Level VL2 VL3 Passed

(VL2) Min Analysis Score 60 97 Passed

(VL2) Max Severity Very High Flaws found: 0 Passed

Scan Type Frequency Last performed Status

Any Semi Annually 10/27/16 Passed

Flaw Severity Grace Period Flaws Exceeding Status

Very High 0 days 0 Passed

High 0 days 0 Passed

Medium 0 days 0 Passed

Low 0 days 0 Passed

Very Low 0 days 0 Passed

Informational 0 days 0 Passed

Type Grace Period Exceeding Status

Min Analysis Score 0 days 0 Passed

Veracode Detailed Report prepared for Tufts University – Oct 27, 2016

© 2016 Veracode, Inc. Tufts University and Veracode Confidential

65 Network Drive, Burlington, MA 01803 Tel.+1.339.674.2500 Fax.+1.339.674.2502 URL:http://www.veracode.com3

Findings & Recommendations

Detailed Flaws by Severity

Very High (0 flaws)

No flaws of this type were found

High (0 flaws)
No flaws of this type were found

Medium (6 flaws)

CRLF Injection(6 flaws)

Description
The acronym CRLF stands for "Carriage Return, Line Feed" and refers to the sequence of characters used to denote the end
of a line of text. CRLF injection vulnerabilities occur when data enters an application from an untrusted source and is not
properly validated before being used. For example, if an attacker is able to inject a CRLF into a log file, he could append
falsified log entries, thereby misleading administrators or cover traces of the attack. If an attacker is able to inject CRLFs into
an HTTP response header, he can use this ability to carry out other attacks such as cache poisoning. CRLF vulnerabilities
primarily affect data integrity.

Recommendations
Apply robust input filtering for all user-supplied data, using centralized data validation routines when possible. Use output
filters to sanitize all output derived from user-supplied input, replacing non-alphanumeric characters with their HTML entity
equivalents.

Associated Flaws by CWE ID:

Improper Output Neutralization for Logs (CWE ID 117)(6 flaws)

Description
A function call could result in a log forging attack. Writing unsanitized user-supplied data into a log file allows an
attacker to forge log entries or inject malicious content into log files. Corrupted log files can be used to cover an
attacker's tracks or as a delivery mechanism for an attack on a log viewing or processing utility. For example, if a web
administrator uses a browser-based utility to review logs, a cross-site scripting attack might be possible.

Effort to Fix: 2 - Implementation error. Fix is approx. 6-50 lines of code. 1 day to fix.

Recommendations
Avoid directly embedding user input in log files when possible. Sanitize user-supplied data used to construct log
entries by using a safe logging mechanism such as the OWASP ESAPI Logger, which will automatically remove
unexpected carriage returns and line feeds and can be configured to use HTML entity encoding for non-alphanumeric
data. Only write custom blacklisting code when absolutely necessary. Always validate user-supplied input to ensure
that it conforms to the expected format, using centralized data validation routines when possible.

Instances found via Static Scan

Flaw Id Module # Class # Module Location Fix By

5 1 - app-debug.apk edu/.../cs/imghostapp/Login.java 198

Veracode Detailed Report prepared for Tufts University – Oct 27, 2016

© 2016 Veracode, Inc. Tufts University and Veracode Confidential

65 Network Drive, Burlington, MA 01803 Tel.+1.339.674.2500 Fax.+1.339.674.2502 URL:http://www.veracode.com4

Flaw Id Module # Class # Module Location Fix By

8 2 - app-debug.apk edu/.../MakePostRequest.java 51

4 3 - app-debug.apk edu/.../MakeRequest.java 45

3 4 - app-debug.apk .../media/MediaBrowserCompat.java
1693

1 5 - app-debug.apk .../MediaBrowserServiceCompat.java
448

6 7 - app-debug.apk edu/.../imghostapp/ViewImages.java 121

Low (3 flaws)

Code Quality(1 flaw)

Description
Code quality issues stem from failure to follow good coding practices and can lead to unpredictable behavior. These may
include but are not limited to:

Neglecting to remove debug code or dead code*

Improper resource management, such as using a pointer after it has been freed*

Using the incorrect operator to compare objects*

Failing to follow an API or framework specification*

Using a language feature or API in an unintended manner*
While code quality flaws are generally less severe than other categories and usually are not directly exploitable, they may
serve as indicators that developers are not following practices that increase the reliability and security of an application. For
an attacker, code quality issues may provide an opportunity to stress the application in unexpected ways.

Recommendations
The wide variance of code quality issues makes it impractical to generalize how these issues should be addressed. Refer to
individual categories for specific recommendations.

Associated Flaws by CWE ID:

Improper Resource Shutdown or Release (CWE ID 404)(1 flaw)

Description
The application fails to release (or incorrectly releases) a system resource before it is made available for re-use. This
condition often occurs with resources such as database connections or file handles. Most unreleased resource issues
result in general software reliability problems, but if an attacker can intentionally trigger a resource leak, it may be
possible to launch a denial of service attack by depleting the resource pool.

Effort to Fix: 2 - Implementation error. Fix is approx. 6-50 lines of code. 1 day to fix.

Recommendations
When a resource is created or allocated, the developer is responsible for properly releasing the resource as well as
accounting for all potential paths of expiration or invalidation. Ensure that all code paths properly release resources.

Instances found via Static Scan

Veracode Detailed Report prepared for Tufts University – Oct 27, 2016

© 2016 Veracode, Inc. Tufts University and Veracode Confidential

65 Network Drive, Burlington, MA 01803 Tel.+1.339.674.2500 Fax.+1.339.674.2502 URL:http://www.veracode.com5

Flaw Id Module # Class # Module Location Fix By

7 3 - app-debug.apk edu/.../MakeRequest.java 57

Information Leakage(2 flaws)

Description
An information leak is the intentional or unintentional disclosure of information that is either regarded as sensitive within the
product's own functionality or provides information about the product or its environment that could be useful in an attack.
Information leakage issues are commonly overlooked because they cannot be used to directly exploit the application.
However, information leaks should be viewed as building blocks that an attacker uses to carry out other, more complicated
attacks.

There are many different types of problems that involve information leaks, with severities that can range widely depending on
the type of information leaked and the context of the information with respect to the application. Common sources of
information leakage include, but are not limited to:

Source code disclosure*

Browsable directories*

Log files or backup files in web-accessible directories*

Unfiltered backend error messages*

Exception stack traces*

Server version information*

Transmission of uninitialized memory containing sensitive data*

Recommendations
Configure applications and servers to return generic error messages and to suppress stack traces from being displayed to end
users. Ensure that errors generated by the application do not provide insight into specific backend issues.

Remove all backup files, binary archives, alternate versions of files, and test files from web-accessible directories of production
servers. The only files that should be present in the application's web document root are files required by the application.
Ensure that deployment procedures include the removal of these file types by an administrator. Keep web and application
servers fully patched to minimize exposure to publicly-disclosed information leakage vulnerabilities.

Associated Flaws by CWE ID:

Information Exposure Through Sent Data (CWE ID 201)(2 flaws)

Description
Sensitive information may be exposed as a result of outbound network connections made by the application. This can
manifest in a couple of different ways.

In C/C++ applications, sometimes the developer fails to zero out a buffer before populating it with data. This can cause
information leakage if, for example, the buffer contains a data structure for which only certain fields were populated.
The uninitialized fields would contain whatever data is present at that memory location. Sensitive information from
previously allocated variables could then be leaked when the buffer is sent over the network.

Veracode Detailed Report prepared for Tufts University – Oct 27, 2016

© 2016 Veracode, Inc. Tufts University and Veracode Confidential

65 Network Drive, Burlington, MA 01803 Tel.+1.339.674.2500 Fax.+1.339.674.2502 URL:http://www.veracode.com6

Mobile applications may also transmit sensitive information such as email or SMS messages, address book entries,
GPS location data, and anything else that can be accessed by the mobile API. This behavior is common in mobile
spyware applications designed to exfiltrate data to a listening post or other data collection point. This flaw is
categorized as low severity because it only impacts confidentiality, not integrity or availability. However, in the context
of a mobile application, the significance of an information leak may be much greater, especially if misaligned with user
expectations or data privacy policies.

Effort to Fix: 2 - Implementation error. Fix is approx. 6-50 lines of code. 1 day to fix.

Recommendations
In C/C++ applications, ensure that all struct elements are initialized or zeroed before being sent. In mobile
applications, ensure that the transfer of sensitive data is intended and that it does not violate application security policy
or user expectations.

Instances found via Static Scan

Flaw Id Module # Class # Module Location Fix By

9 6 - app-debug.apk edu/.../MultipartUtility.java 82

2 6 - app-debug.apk edu/.../MultipartUtility.java 98

Very Low (0 flaws)
No flaws of this type were found

Info (0 flaws)
No flaws of this type were found

Veracode Detailed Report prepared for Tufts University – Oct 27, 2016

© 2016 Veracode, Inc. Tufts University and Veracode Confidential

65 Network Drive, Burlington, MA 01803 Tel.+1.339.674.2500 Fax.+1.339.674.2502 URL:http://www.veracode.com7

About Veracode's Methodology
The Veracode platform uses static and dynamic analysis (for web applications) to inspect executables and identify security flaws in your
applications. Using both static and dynamic analysis helps reduce false negatives and detect a broader range of security flaws. The
static binary analysis engine models the binary executable into an intermediate representation, which is then verified for security flaws
using a set of automated security scans. Dynamic analysis uses an automated penetration testing technique to detect security flaws at
runtime. Once the automated process is complete, a security technician verifies the output to ensure the lowest false positive rates in
the industry. The end result is an accurate list of security flaws for the classes of automated scans applied to the application.

Veracode Rating System Using Multiple Analysis Techniques
Higher assurance applications require more comprehensive analysis to accurately score their security quality. Because each analysis
technique (automated static, automated dynamic, manual penetration testing or manual review) has differing false negative (FN) rates
for different types of security flaws, any single analysis technique or even combination of techniques is bound to produce a certain level
of false negatives. Some false negatives are acceptable for lower business critical applications, so a less expensive analysis using only
one or two analysis techniques is acceptable. At higher business criticality the FN rate should be close to zero, so multiple analysis
techniques are recommended.

Application Security Policies
The Veracode platform allows an organization to define and enforce a uniform application security policy across all applications in its
portfolio. The elements of an application security policy include the target Veracode Level for the application; types of flaws that should
not be in the application (which may be defined by flaw severity, flaw category, CWE, or a common standard including OWASP,
CWE/SANS Top 25, or PCI); minimum Veracode security score; required scan types and frequencies; and grace period within which
any policy-relevant flaws should be fixed.

Policy constraints
Policies have three main constraints that can be applied: rules, required scans, and remediation grace periods.

Evaluating applications against a policy
When an application is evaluated against a policy, it can receive one of four assessments:

Not assessed The application has not yet had a scan published
Passed The application has passed all the aspects of the policy, including rules, required scans, and grace period.
Did not pass The application has not completed all required scans; has not achieved the target Veracode Level; or has one or
more policy relevant flaws that have exceeded the grace period to fix.
Conditional pass The application has one or more policy relevant flaws that have not yet exceeded the grace period to fix.

Understand Veracode Levels
The Veracode Level (VL) achieved by an application is determined by type of testing performed on the application, and the severity and
types of flaws detected. A minimum security score (defined below) is also required for each level.

There are five Veracode Levels denoted as VL1, VL2, VL3, VL4, and VL5. VL1 is the lowest level and is achieved by demonstrating
that security testing, automated static or dynamic, is utilized during the SDLC. VL5 is the highest level and is achieved by performing
automated and manual testing and removing all significant flaws. The Veracode Levels VL2, VL3, and VL4 form a continuum of
increasing software assurance between VL1 and VL5.

For IT staff operating applications, Veracode Levels can be used to set application security policies. For deployment scenarios of
different business criticality, differing VLs should be made requirements. For example, the policy for applications that handle credit card
transactions, and therefore have PCI compliance requirements, should be VL5. A medium business criticality internal application could
have a policy requiring VL3.

Software developers can decide which VL they want to achieve based on the requirements of their customers. Developers of software
that is mission critical to most of their customers will want to achieve VL5. Developers of general purpose business software may want

Veracode Detailed Report prepared for Tufts University – Oct 27, 2016

© 2016 Veracode, Inc. Tufts University and Veracode Confidential

65 Network Drive, Burlington, MA 01803 Tel.+1.339.674.2500 Fax.+1.339.674.2502 URL:http://www.veracode.com8

to achieve VL3 or VL4. Once the software has achieved a Veracode Level it can be communicated to customers through a Veracode
Report or through the Veracode Directory on the Veracode web site.

Criteria for achieving Veracode Levels
The following table defines the details to achieve each Veracode Level. The criteria for all columns: Flaw Severities Not
Allowed, Flaw Categories not Allowed, Testing Required, and Minimum Score.

*Dynamic is only an option for web applications.

Veracode Level Flaw Severities Not Allowed Testing Required* Minimum Score

VL5 V.High, High, Medium Static AND Manual 90

VL4 V.High, High, Medium Static 80

VL3 V.High, High Static 70

VL2 V.High Static OR Dynamic OR Manual 60

VL1

Static OR Dynamic OR Manual

When multiple testing techniques are used it is likely that not all testing will be performed on the exact same build. If that is the
case the latest test results from a particular technique will be used to calculate the current Veracode Level. After 6 months test
results will be deemed out of date and will no longer be used to calculate the current Veracode Level.

Business Criticality
The foundation of the Veracode rating system is the concept that more critical applications require higher security quality scores to be
acceptable risks. Less business critical applications can tolerate lower security quality. The business criticality is dictated by the typical
deployed environment and the value of data used by the application. Factors that determine business criticality are: reputation damage,
financial loss, operational risk, sensitive information disclosure, personal safety, and legal violations.

US. Govt. OMB Memorandum M-04-04; NIST FIPS Pub. 199

Business Criticality Description

Very High Mission critical for business/safety of life and limb on the line

High Exploitation causes serious brand damage and financial loss with long term business impact

Medium Applications connected to the internet that process financial or private customer information

Low Typically internal applications with non-critical business impact

Very Low Applications with no material business impact

Business Criticality Definitions
Very High (BC5) This is typically an application where the safety of life or limb is dependent on the system; it is mission critical
the application maintain 100% availability for the long term viability of the project or business. Examples are control software
for industrial, transportation or medical equipment or critical business systems such as financial trading systems.
High (BC4) This is typically an important multi-user business application reachable from the internet and is critical that the
application maintain high availability to accomplish its mission. Exploitation of high criticality applications cause serious brand
damage and business/financial loss and could lead to long term business impact.
Medium (BC3) This is typically a multi-user application connected to the internet or any system that processes financial or
private customer information. Exploitation of medium criticality applications typically result in material business impact resulting

Veracode Detailed Report prepared for Tufts University – Oct 27, 2016

© 2016 Veracode, Inc. Tufts University and Veracode Confidential

65 Network Drive, Burlington, MA 01803 Tel.+1.339.674.2500 Fax.+1.339.674.2502 URL:http://www.veracode.com9

in some financial loss, brand damage or business liability. An example is a financial services company's internal 401K
management system.
Low (BC2) This is typically an internal only application that requires low levels of application security such as authentication to
protect access to non-critical business information and prevent IT disruptions. Exploitation of low criticality applications may
lead to minor levels of inconvenience, distress or IT disruption. An example internal system is a conference room reservation
or business card order system.
Very Low (BC1) Applications that have no material business impact should its confidentiality, data integrity and availability be
affected. Code security analysis is not required for applications at this business criticality, and security spending should be
directed to other higher criticality applications.

Scoring Methodology
The Veracode scoring system, Security Quality Score, is built on the foundation of two industry standards, the Common Weakness
Enumeration (CWE) and Common Vulnerability Scoring System (CVSS). CWE provides the dictionary of security flaws and CVSS
provides the foundation for computing severity, based on the potential Confidentiality, Integrity and Availability impact of a flaw if
exploited.

The Security Quality Score is a single score from 0 to 100, where 0 is the most insecure application and 100 is an application with no
detectable security flaws. The score calculation includes non-linear factors so that, for instance, a single Severity 5 flaw is weighted
more heavily than five Severity 1 flaws, and so that each additional flaw at a given severity contributes progressively less to the score.

Veracode assigns a severity level to each flaw type based on three foundational application security requirements — Confidentiality,
Integrity and Availability. Each of the severity levels reflects the potential business impact if a security breach occurs across one or
more of these security dimensions.

Confidentiality Impact
According to CVSS, this metric measures the impact on confidentiality if a exploit should occur using the vulnerability on the
target system. At the weakness level, the scope of the Confidentiality in this model is within an application and is measured at
three levels of impact -None, Partial and Complete.

Integrity Impact
This metric measures the potential impact on integrity of the application being analyzed. Integrity refers to the trustworthiness
and guaranteed veracity of information within the application. Integrity measures are meant to protect data from unauthorized
modification. When the integrity of a system is sound, it is fully proof from unauthorized modification of its contents.

Availability Impact
This metric measures the potential impact on availability if a successful exploit of the vulnerability is carried out on a target
application. Availability refers to the accessibility of information resources. Almost exclusive to this domain are denial-of-
service vulnerabilities. Attacks that compromise authentication and authorization for application access, application memory,
and administrative privileges are examples of impact on the availability of an application.

Security Quality Score Calculation
The overall Security Quality Score is computed by aggregating impact levels of all weaknesses within an application and representing
the score on a 100 point scale. This score does not predict vulnerability potential as much as it enumerates the security weaknesses
and their impact levels within the application code.

The Raw Score formula puts weights on each flaw based on its impact level. These weights are exponential and determined by
empirical analysis by Veracode's application security experts with validation from industry experts. The score is normalized to a scale of
0 to 100, where a score of 100 is an application with 0 detected flaws using the analysis technique for the application's business
criticality.

Understand Severity, Exploitability, and Remediation Effort
Severity and exploitability are two different measures of the seriousness of a flaw. Severity is defined in terms of the potential impact to
confidentiality, integrity, and availability of the application as defined in the CVSS, and exploitability is defined in terms of the likelihood

Veracode Detailed Report prepared for Tufts University – Oct 27, 2016

© 2016 Veracode, Inc. Tufts University and Veracode Confidential

65 Network Drive, Burlington, MA 01803 Tel.+1.339.674.2500 Fax.+1.339.674.2502 URL:http://www.veracode.com10

or ease with which a flaw can be exploited. A high severity flaw with a high likelihood of being exploited by an attacker is potentially
more dangerous than a high severity flaw with a low likelihood of being exploited.

Remediation effort, also called Complexity of Fix, is a measure of the likely effort required to fix a flaw. Together with severity, the
remediation effort is used to give Fix First guidance to the developer.

Veracode Flaw Severities
Veracode flaw severities are defined as follows:

Severity Description

Very High
The offending line or lines of code is a very serious weakness and is an easy target for an
attacker. The code should be modified immediately to avoid potential attacks.

High
The offending line or lines of code have significant weakness, and the code should be
modified immediately to avoid potential attacks.

Medium
A weakness of average severity. These should be fixed in high assurance software. A fix for
this weakness should be considered after fixing the very high and high for medium
assurance software.

Low
This is a low priority weakness that will have a small impact on the security of the software.
Fixing should be consideration for high assurance software. Medium and low assurance
software can ignore these flaws.

Very Low
Minor problems that some high assurance software may want to be aware of. These flaws
can be safely ignored in medium and low assurance software.

Informational
Issues that have no impact on the security quality of the application but which may be of
interest to the reviewer.

Informational findings
Informational severity findings are items observed in the analysis of the application that have no impact on the security quality
of the application but may be interesting to the reviewer for other reasons. These findings may include code quality issues, API
usage, and other factors.

Informational severity findings have no impact on the security quality score of the application and are not included in the
summary tables of flaws for the application.

Exploitability
Each flaw instance in a static scan may receive an exploitability rating. The rating is an indication of the intrinsic likelihood that the flaw
may be exploited by an attacker. Veracode recommends that the exploitability rating be used to prioritize flaw remediation within a
particular group of flaws with the same severity and difficulty of fix classification.

The possible exploitability ratings include:

Exploitability Description

V. Unlikely Very unlikely to be exploited

Unlikely Unlikely to be exploited

Veracode Detailed Report prepared for Tufts University – Oct 27, 2016

© 2016 Veracode, Inc. Tufts University and Veracode Confidential

65 Network Drive, Burlington, MA 01803 Tel.+1.339.674.2500 Fax.+1.339.674.2502 URL:http://www.veracode.com11

Exploitability Description

Neutral Neither likely nor unlikely to be exploited.

Likely Likely to be exploited

V. Likely Very likely to be exploited

Note: All reported flaws found via dynamic scans are assumed to be exploitable, because the dynamic scan actually executes
the attack in question and verifies that it is valid.

Effort/Complexity of Fix
Each flaw instance receives an effort/complexity of fix rating based on the classification of the flaw. The effort/complexity of fix
rating is given on a scale of 1 to 5, as follows:

Effort/Complexity of Fix Description

5 Complex design error. Requires significant redesign.

4 Simple design error. Requires redesign and up to 5 days to fix.

3 Complex implementation error. Fix is approx. 51-500 lines of code. Up to 5 days to fix.

2 Implementation error. Fix is approx. 6-50 lines of code. 1 day to fix.

1 Trivial implementation error. Fix is up to 5 lines of code. One hour or less to fix.

Flaw Types by Severity Level
The flaw types by severity level table provides a summary of flaws found in the application by Severity and Category. The table puts the
Security Quality Score into context by showing the specific breakout of flaws by severity, used to compute the score as described
above. If multiple analysis techniques are used, the table includes a breakout of all flaws by category and severity for each analysis
type performed.

Flaws by Severity
The flaws by severity chart shows the distribution of flaws by severity. An application can get a mediocre security rating by having a few
high risk flaws or many medium risk flaws.

Flaws in Common Modules
The flaws in common modules listing shows a summary of flaws in shared dependency modules in this application. A shared
dependency is a dependency that is used by more than one analyzed module. Each module is listed with the number of executables
that consume it as a dependency and a summary of the impact on the application's security score of the flaws found in the dependency.

The score impact represents the amount that the application score would increase if all the flaws in the shared dependency module
were fixed. This information can be used to focus remediation efforts on common modules with a higher impact on the application
security score.

 Only common modules that were uploaded with debug information are included in the Flaws in Common Modules listing.

Veracode Detailed Report prepared for Tufts University – Oct 27, 2016

© 2016 Veracode, Inc. Tufts University and Veracode Confidential

65 Network Drive, Burlington, MA 01803 Tel.+1.339.674.2500 Fax.+1.339.674.2502 URL:http://www.veracode.com12

Action Items
The Action Items section of the report provides guidance on the steps required to bring the application to a state where it passes its
assigned policy. These steps may include fixing or mitigating flaws or performing additional scans. The section also includes best
practice recommendations to improve the security quality of the application.

Common Weakness Enumeration (CWE)
The Common Weakness Enumeration (CWE) is an industry standard classification of types of software weaknesses, or flaws, that can
lead to security problems. CWE is widely used to provide a standard taxonomy of software errors. Every flaw in a Veracode report is
classified according to a standard CWE identifier.

More guidance and background about the CWE is available at http://cwe.mitre.org/data/index.html.	

About Manual Assessments
The Veracode platform can include the results from a manual assessment (usually a penetration test or code review) as part of a report.
These results differ from the results of automated scans in several important ways, including objectives, attack vectors, and common
attack patterns.

A manual penetration assessment is conducted to observe the application code in a run-time environment and to simulate real-world
attack scenarios. Manual testing is able to identify design flaws, evaluate environmental conditions, compound multiple lower risk flaws
into higher risk vulnerabilities, and determine if identified flaws affect the confidentiality, integrity, or availability of the application.

Objectives
The stated objectives of a manual penetration assessment are:

• Perform testing, using proprietary and/or public tools, to determine whether it is possible for an attacker to:
• Circumvent authentication and authorization mechanisms
• Escalate application user privileges
• Hijack accounts belonging to other users
• Violate access controls placed by the site administrator
• Alter data or data presentation
• Corrupt application and data integrity, functionality and performance
• Circumvent application business logic
• Circumvent application session management
• Break or analyze use of cryptography within user accessible components
• Determine possible extent access or impact to the system by attempting to exploit vulnerabilities
• Score vulnerabilities using the Common Vulnerability Scoring System (CVSS)
• Provide tactical recommendations to address security issues of immediate consequence

Provide strategic recommendations to enhance security by leveraging industry best practices

Attack vectors
In order to achieve the stated objectives, the following tests are performed as part of the manual penetration assessment,
when applicable to the platforms and technologies in use:

• Cross Site Scripting (XSS)
• SQL Injection
• Command Injection
• Cross Site Request Forgery (CSRF)
• Authentication/Authorization Bypass
• Session Management testing, e.g. token analysis, session expiration, and logout effectiveness
• Account Management testing, e.g. password strength, password reset, account lockout, etc.
• Directory Traversal
• Response Splitting
• Stack/Heap Overflows
• Format String Attacks

Veracode Detailed Report prepared for Tufts University – Oct 27, 2016

© 2016 Veracode, Inc. Tufts University and Veracode Confidential

65 Network Drive, Burlington, MA 01803 Tel.+1.339.674.2500 Fax.+1.339.674.2502 URL:http://www.veracode.com13

• Cookie Analysis
• Server Side Includes Injection
• Remote File Inclusion
• LDAP Injection
• XPATH Injection
• Internationalization attacks
• Denial of Service testing at the application layer only
• AJAX Endpoint Analysis
• Web Services Endpoint Analysis
• HTTP Method Analysis
• SSL Certificate and Cipher Strength Analysis
• Forced Browsing

CAPEC Attack Pattern Classification
The following attack pattern classifications are used to group similar application flaws discovered during manual penetration
testing. Attack patterns describe the general methods employed to access and exploit the specific weaknesses that exist
within an application. CAPEC (Common Attack Pattern Enumeration and Classification) is an effort led by Cigital, Inc. and is
sponsored by the United States Department of Homeland Security's National Cyber Security Division.

Abuse of Functionality
Exploitation of business logic errors or misappropriation of programmatic resources. Application functions are developed to
specifications with particular intentions, and these types of attacks serve to undermine those intentions.

Examples:

• Exploiting password recovery mechanisms
• Accessing unpublished or test APIs
• Cache poisoning

Spoofing
Impersonation of entities or trusted resources. A successful attack will present itself to a verifying entity with an acceptable
level of authenticity.

Examples:

• Man in the middle attacks
• Checksum spoofing
• Phishing attacks

Probabilistic Techniques
Using predictive capabilities or exhaustive search techniques in order to derive or manipulate sensitive information. Attacks
capitalize on the availability of computing resources or the lack of entropy within targeted components.

Examples:

• Password brute forcing
• Cryptanalysis
• Manipulation of authentication tokens

Exploitation of Authentication
Circumventing authentication requirements to access protected resources. Design or implementation flaws may allow
authentication checks to be ignored, delegated, or bypassed.

Examples:

• Cross-site request forgery
• Reuse of session identifiers
• Flawed authentication protocol

Veracode Detailed Report prepared for Tufts University – Oct 27, 2016

© 2016 Veracode, Inc. Tufts University and Veracode Confidential

65 Network Drive, Burlington, MA 01803 Tel.+1.339.674.2500 Fax.+1.339.674.2502 URL:http://www.veracode.com14

Resource Depletion
Affecting the availability of application components or resources through symmetric or asymmetric consumption. Unrestricted
access to computationally expensive functions or implementation flaws that affect the stability of the application can be
targeted by an attacker in order to cause denial of service conditions.

Examples:

• Flooding attacks
• Unlimited file upload size
• Memory leaks

Exploitation of Privilege/Trust
Undermining the application's trust model in order to gain access to protected resources or gain additional levels of access as
defined by the application. Applications that implicitly extend trust to resources or entities outside of their direct control are
susceptible to attack.

Examples:

• Insufficient access control lists
• Circumvention of client side protections
• Manipulation of role identification information

Injection
Inserting unexpected inputs to manipulate control flow or alter normal business processing. Applications must contain
sufficient data validation checks in order to sanitize tainted data and prevent malicious, external control over internal
processing.

Examples:

• SQL Injection
• Cross-site scripting
• XML Injection

Data Structure Attacks
Supplying unexpected or excessive data that results in more data being written to a buffer than it is capable of holding.
Successful attacks of this class can result in arbitrary command execution or denial of service conditions.

Examples:

• Buffer overflow
• Integer overflow
• Format string overflow

Data Leakage Attacks
Recovering information exposed by the application that may itself be confidential or may be useful to an attacker in discovering
or exploiting other weaknesses. A successful attack may be conducted passive observation or active interception methods.
This attack pattern often manifests itself in the form of applications that expose sensitive information within error messages.

Examples:

• Sniffing clear-text communication protocols
• Stack traces returned to end users
• Sensitive information in HTML comments

Resource Manipulation
Manipulating application dependencies or accessed resources in order to undermine security controls and gain unauthorized
access to protected resources. Applications may use tainted data when constructing paths to local resources or when
constructing processing environments.

Veracode Detailed Report prepared for Tufts University – Oct 27, 2016

© 2016 Veracode, Inc. Tufts University and Veracode Confidential

65 Network Drive, Burlington, MA 01803 Tel.+1.339.674.2500 Fax.+1.339.674.2502 URL:http://www.veracode.com15

Examples:

• Carriage Return Line Feed log file injection
• File retrieval via path manipulation
• User specification of configuration files

Time and State Attacks
Undermining state condition assumptions made by the application or capitalizing on time delays between security checks and
performed operations. An application that does not enforce a required processing sequence or does not handle concurrency
adequately will be susceptible to these attack patterns.

Examples:

• Bypassing intermediate form processing steps
• Time-of-check and time-of-use race conditions
• Deadlock triggering to cause a denial of service

Terms of Use
Use and distribution of this report are governed by the agreement between Veracode and its customer. In particular, this report and the
results in the report cannot be used publicly in connection with Veracode’s name without written permission.

Veracode Detailed Report prepared for Tufts University – Oct 27, 2016

© 2016 Veracode, Inc. Tufts University and Veracode Confidential

65 Network Drive, Burlington, MA 01803 Tel.+1.339.674.2500 Fax.+1.339.674.2502 URL:http://www.veracode.com16

Appendix A: Referenced Source Files
Id Filename Path

1 Login.java edu/tufts/cs/imghostapp/

2 MakePostRequest.java edu/tufts/cs/imghostapp/

3 MakeRequest.java edu/tufts/cs/imghostapp/

4 MediaBrowserCompat.java android/support/v4/media/

5 MediaBrowserServiceCompat.j
ava

android/support/v4/media/

6 MultipartUtility.java edu/tufts/cs/imghostapp/

7 ViewImages.java edu/tufts/cs/imghostapp/

Veracode Detailed Report prepared for Tufts University – Oct 27, 2016

© 2016 Veracode, Inc. Tufts University and Veracode Confidential

65 Network Drive, Burlington, MA 01803 Tel.+1.339.674.2500 Fax.+1.339.674.2502 URL:http://www.veracode.com17

