
NATIVE RELEASE
ENGINEERING AT

TRIPADVISOR

~100 million active installs
~1.5 million daily active users

~190 developers have contributed
~81 since the past year

~40 the past month

NATIVE RELEASE
CHALLENGES

The hard truth

• You can’t take it back.

• You can’t force users to update.

• You have to consider what goes in the client and
what in the server.

Exceptions
matter

(a lot)

Fragmentation
… makes testing harder

First impressions matter

CODING IN SCALE

Version control!

• https://xkcd.com/1597/

master

amazing_feature_1

amazing_feature_2

Branch per feature

1. Pull request

2. Code reviews

3. 2 +1s

4. Static analysis

5. Automated tests

6. Merge

1. Pull request

2. Code reviews

3. 2 +1s

4. Static analysis

5. Automated tests

6. Merge

1. Pull request

2. Code reviews

3. 2 +1s

4. Static analysis

5. Automated tests

6. Merge

1. Pull request

2. Code reviews

3. 2 +1s

4. Static analysis

5. Automated tests

6. Merge

1. Pull request

2. Code reviews

3. 2 +1s

4. Static analysis

5. Automated tests

6. Merge

1. Pull request

2. Code reviews

3. 2 +1s

4. Static analysis

5. Automated tests

6. Merge

Dogfooding

Communication is important!

• Mobile Design Review

• Brown bags

• Mobile guilds

• Hackathons

RELEASING

How often? Monthly?

• Not fast enough for product managers.

• Need to be able to quick fix.

• Have to be more agile.

How often? Daily?
• Not possible (apple takes days to review and play

store needs a day)

• Plus users don’t really like very frequent updates!

How often?

1 week 1 week
master

release candidate

release

Native ops

• A dedicated team responsible for release
engineering.

Step 1:
Preparing a release version

Things you do once

• Choose a suitable package name.

• Create a certificate for signing your app.

• Decide if it will be free or paid.

• Decide what platforms and screens to support.

Things you do every time

• Update version code and name.

• Remove logging and debugging.

• Verify your manifest and permissions.

• Makes sure the server is pointing to production.

Things you do every time

• Shrink and obfuscate your app.

android { 
 defaultConfig {} 
 buildTypes { 
 release { 
 minifyEnabled true  
 proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro' 
 } 
 } 
}

Things you do every time
• Sign you app

• .. manually: Build -> Generate signed APK

• or automatically:

android { 
 defaultConfig {} 
 signingConfigs { 
 release { 
 storeFile file("myreleasekey.keystore") 
 storePassword "password"  
 keyAlias "MyReleaseKey"  
 keyPassword "password"  
 } 
 } 
 buildTypes { 
 release { 
 signingConfig signingConfigs.release  
 } 
 } 
}

Step 2: Prepare your listing

• Description and what’s new text (localized)

• App icon, graphics and screenshots

Step 3: Uploading your apk

• Retrieves and edits meta data.

• Uploads your apk automatically.

• Uploads promos and graphics.

Controlling the release

Alpha/Beta channels

Staged rollouts

Feature switches

• Feature switches that get set
through a periodic
configuration call

TESTING

Unit tests

public int addOne(int number) { 
 return number + 1; 
} 
 
@Test 
public void testAddOne_NegativeNumber_CorrectOutput() { 
 int result = addOne(-2); 
 Assert.assertEquals(-1, result); 
}

Run on every pull request

UI & Integration tests

onView.withId(R.id.my_text_view)) 
 .check(matches(withText("Hello World!")));

Run every 6 hours

alternatively…

Manual

• Device lab

• Emulated slow network

• Bug hunts with devs, pms, QA

Rage shake

Top excuses for not testing

#1 excuse: “Android is too hard to test.”

(not)

#2 excuse: “We were a small team and wanted
to get the features to the users first. Now we will

write all the tests.”

#3 excuse: “There are so many devices and ui
tests are flaky that it is futile to test.”

MONITORING

“If it’s worth doing, it’s worth measuring”

Crashes

Performance

• Time it takes for screens to appear

• Battery consumption

• API latency

• Average response size

PerformanceLog performanceLog = ApiLogger.startProfiling(tag, “action");
ApiLogger.ex(TAG, new Exception("API call failed, throwable was 'null'."));

User metrics
• Session length

• Retention rate

• Daily Active Users

• Monthly Active Users

• Average Revenue Per User

Daily active users

OS adoption rate

Feature tracking

• Are users interacting with a feature?

• A/B testing: Which option is better?

Feature tracking at TA

coverPageBtn.setOnClickListener(new View.OnClickListener() { 
 @Override  
 public void onClick(View view) { 
 getTrackingAPIHelper().trackEvent(getLookbackServletName(), 
 TrackingAction.COVER_PAGE_CLICK); 
 } 
});

Analytics tools

