
21

CHAPTER 3

Using Pure Data

SECTION 3.1

Basic objects and principles of operation

Now we are familiar with the basics of Pd let’s look at some essential objects
and rules for connecting them together. There are about 20 message objects
you should try to learn by heart because almost everything else is built from
them.

Hot and cold inlets

Most objects operating on messages have a “hot” inlet and (optionally) one or
more “cold” inlets. Messages received at the hot inlet, usually the leftmost one,
will cause computation to happen and output to be generated. Messages on a
cold inlet will update the internal value of an object but not cause it to output
the result yet. This seems strange at first, like a bug. The reason is so that we
can order evaluation. This means waiting for sub-parts of a program to finish
in the right order before proceeding to the next step. From maths you know
that brackets describe the order of a calculation. The result of 4× 10− 3 is not
the same as 4 × (10 − 3), we need to calculate the parenthesised parts first. A
Pd program works the same way, you need to wait for the results from certain
parts before moving on.

10

33

* 5

+ 3

3

fig 3.1: Hot and
cold inlets

In Fig. 3.1 a new number box is added to right inlet of * .
This new value represents a constant multiplier k so we can
compute y = kx + 3. It overrides the 5 given as an initial
parameter when changed. In Fig. 3.1 it’s set to 3 so we have
y = 3x + 3. Experiment setting it to another value and
then changing the left number box. Notice that changes to
the right number box don’t immediately effect the output,

because it connects to the cold inlet of * , but changes to the left number box
cause the output to change, because it is connected to the hot inlet of * .

Bad evaluation order

16 15

+

8

+

good bad

8

fig 3.2: Bad ordering

A problem arises when messages fan out from a single
outlet into other operations. Look at the two patches in
Fig. 3.2. Can you tell the difference? It is impossible
to tell just by looking that one is a working patch and
the other contains a nasty error. Each is an attempt to
double the value of a number by connecting it to both

22 Using Pure Data

sides of a + . When connections are made this way the behaviour is undefined,
but usually happens in the order the connections were made. The first one
works because the right (cold) inlet was connected before the left (hot) one.
In the second patch the arriving number is added to the last number received
because the hot inlet is addressed first. Try making these patches by connecting
the inlets to + in a different order. If you accidentally create errors this way
they are hard to debug.

Trigger objects

A trigger is an object that splits a message up into parts and sends them over
several outlets in order. It solves the evaluation order problem by making the
order explicit.

20

+

10

t f f

fig 3.3: Ordering with
trigger

The order of output is right to left, so a trigger bang float

object outputs a float on the right outlet first, then a
bang on the left one. This can be abbreviated as t b f .
Proper use of triggers ensures correct operation of units
further down the connection graph. The arguments to a
trigger may be s for symbol, f for float, b for bang, p
for pointers and a for any. The “any” type will pass lists

and pointers too. The patch in Fig. 3.3 always works correctly, whatever order
you connect to the + inlets. The float from the right outlet of t f f is always
sent to the cold inlet of + first, and the left one to the hot inlet afterwards.

Making cold inlets hot

7

+

3

t b f

4

fig 3.4: Warming an
inlet

An immediate use for our new knowledge of triggers is to
make an arithmetic operator like + respond to either of
its inlets immediately. Make the patch shown in Fig. 3.4
and try changing the number boxes. When the left one is
changed it sends a float number message to the left (hot)
inlet which updates the output as usual. But now, when
you change the right number box it is split by t b f into

two messages, a float which is sent to the cold (right) inlet of + , and a bang,
which is sent to the hot inlet immediately afterwards. When it receives a bang
on its hot inlet + computes the sum of the two numbers last seen on its inlets,
which gives the right result.

Float objects

The object f is very common. A shorthand for float , which you can also use
if you like to make things clearer, it holds the value of a single floating point
number. You might like to think of it as a variable, a temporary place to store a
number. There are two inlets on f , the rightmost one will set the value of the
object, and the leftmost one will both set the value and/or output it depending
on what message it receives. If it receives a bang message it will just output
whatever value is currently stored, but if the message is a float it will override

3.2 Working with time and events 23

the currently stored value with a new float and immediately output that. This
gives us a way to both set and query the object contents.

Int objects

Although we have noted that integers don’t really exist in Pd, not in a way that
a programmer would understand, whole numbers certainly do. int stores a float
as if it were an integer in that it provides a rounding (truncation) function of
any extra decimal places. Thus 1.6789 becomes 1.0000, equal to 1, when passed
to int .

Symbol and list objects

As for numbers there are likewise object boxes to store lists and symbols in a
temporary location. Both work just like their numerical counterparts. A list
can be given to the right inlet of list and recalled by banging the left inlet.
Similarly symbol can store a single symbol until it is needed.

Merging message connections

When several message connections are all connected to the same inlet that’s
fine. The object will process each of them as they arrive, though it’s up to you
to ensure that they arrive in the right order to do what you expect. Be aware
of race hazards when the sequence is important.

11

10

f

11 12

fig 3.5: Messages to
same inlet

Messages arriving from different sources at the same hot
inlet have no effect on each another, they remain separate
and are simply interleaved in the order they arrive, each
producing output. But be mindful that where several
connections are made to a cold inlet only the last one
to arrive will be relevant. Each of the number boxes in
Fig. 3.5 connects to the same cold inlet of the float box

f and a bang button to the hot inlet. Whenever the bang button is pressed
the output will be whatever is currently stored in f , which will be the last
number box changed. Which number box was updated last in Fig. 3.5? It was
the middle one with a value of 11.

SECTION 3.2

Working with time and events

With our simple knowledge of objects we can now begin making patches that
work on functions of time, the basis of all sound and music.

Metronome

Perhaps the most important primitive operation is to get a beat or timebase.
To get a regular series of bang events metro provides a clock. Tempo is given
as a period in milliseconds rather than beats per minute (as is usual with most
music programs).

24 Using Pure Data

1 0

metro 1000

fig 3.6: Metronome

The left inlet toggles the metronome on and off when it
receives a 1 or 0, while the right one allows you to set
the period. Periods that are fractions of a millisecond are
allowed. The metro emits a bang as soon as it is switched
on and the following bang occurs after the time period.
In Fig. 3.6 the time period is 1000ms, (equal to 1 second).

The bang button here is used as an indicator. As soon as you click the message
box to send 1 to metro it begins sending out bangs which make the bang button
flash once per second, until you send a 0 message to turn it off.

A counter timebase

We could use the metronome to trigger a sound repeatedly, like a steady drum
beat, but on their own a series of bang events aren’t much use. Although
they are separated in time we cannot keep track of time this way because bang
messages contain no information.

metro 1000

500 250

f 0 + 1

24

fig 3.7: Counter

In Fig. 3.7 we see the metronome again. This time the
messages to start and stop it have been conveniently re-
placed by a toggle switch. I have also added two new
messages which can change the period and thus make
the metronome faster or slower. The interesting part is
just below the metronome. A float box receives bang
messages on its hot inlet. Its initial value is 0 so upon

receiving the first bang message it outputs a float number 0 which the number
box then displays. Were it not for the + 1 object the patch would continue
outputting 0 once per beat forever. However, look closely at the wiring of these
two objects, f and + 1 are connected to form an incrementor or counter.
Each time f recieves a bang it ouputs the number currently stored to + 1

which adds 1 to it. This is fed back into the cold inlet of f which updates its
value, now 1. The next time a bang arrives 1 is output, which goes round again,
through + 1 and becomes 2. This repeats as long as bang messages arrive, each
time the output increases by 1. If you start the metronome in Fig. 3.7 you will
see the number box slowly counting up, once per second. Clicking the message
boxes to change the period will make it count up faster with a 500ms delay
between beats (twice per second), or still faster at 4 times per second (250ms
period).

Time objects

Three related objects help us manipulate time in the message domain. timer

accurately measures the interval between receiving two bang messages, the first
on its left inlet and the second on its right inlet. It is shown on the left of
Fig. 3.8.

3.3 Data flow control 25

bang

delay 1000

stop

2000

timer

214.6

pipe 300

0

0

250

fig 3.8: Time objects

Clicking the first bang button will reset and start
timer and then hitting the second one will out-
put the time elapsed (in ms). Notice that timer

is unusual, it’s one of the few objects where the
right inlet behaves as the hot control. delay

shown in the middle of Fig. 3.8 will output a
single bang message a certain time period after
receiving a bang on its left inlet. This interval

is set by its first argument or right inlet, or by the value of a float arriving at its
left inlet, so there are three ways of setting the time delay. If a new bang arrives
any pending one is cancelled and a new delay is initiated. If a stop message
arrives then delay is reset and all pending events are cancelled. Sometimes we
want to delay a stream of number messages by a fixed amount, which is where
pipe comes in. This allocates a memory buffer that moves messages from its
inlet to its outlet, taking a time set by its first argument or second inlet. If you
change the top number box of the right patch in Fig. 3.8 you will see the lower
number box follow it, but lagging behind by 300ms.

Select

This object outputs a bang on one of its outlets matching something in its
argument list. For example select 2 4 6 will output a bang on its second outlet if
it receives a number 4, or on its third outlet when a number 6 arrives. Messages
that do not match any argument are passed through to the rightmost outlet.

f 0 + 1

0

select 0 1 2 3

metro 300

fig 3.9: Simple sequencer

This makes it rather easy to begin making sim-
ple sequences. The patch in Fig. 3.9 cycles around
four steps blinking each bang button in turn. It
is a metronome running with a 300ms period and
a counter. On the first step the counter holds 0,
and when this is output to select it sends a bang
to its first outlet which matches 0. As the counter
increments, successive outlets of select produce a

bang, until the fourth one is reached. When this happens a message containing
0 is triggered which feeds into the cold inlet of f resetting the counter to 0.

SECTION 3.3

Data flow control

In this section are a few common objects used to control the flow of data
around patches. As you have just seen select can send bang messages along a
choice of connections, so it gives us a kind of selective flow.

Route

Route behaves in a similar fashion to select, only it operates on lists. If the first
element of a list matches an argument the remainder of the list is passed to the
corresponding outlet.

26 Using Pure Data

route vcf vco vca

20 0 5

vcf 20

vca 5

fig 3.10: Routing val-
ues

So, route badger mushroom snake will send 20.0 to its third outlet
when it receives the message {snake 20 }. Non match-
ing lists are passed unchanged to the rightmost outlet.
Arguments can be numbers or symbols, but we tend to
use symbols because a combination of route with lists is
a great way to give parameters names so we don’t for-
get what they are for. We have a few named values in

Fig. 3.10 for synthesiser controls. Each message box contains a two element
list, a name-value pair. When route encounters one that matches one of its
arguments it sends it to the correct number box.

Moses

A “stream splitter” which sends numbers below a threshold to its left outlet,
and numbers greater than or equal to the threshold to the right outlet. The
threshold is set by the first argument or a value appearing on the right inlet.
moses 20 splits any incoming numbers at 20.0

Spigot

This is a switch that can control any stream of messages including lists and
symbols. A zero on the right inlet of spigot stops any messages on the left inlet
passing to the outlet. Any non-zero number turns the spigot on.

Swap

swap

15

20

20

15

fig 3.11: Swapping values

It might look like a very trivial thing to do, and you
may ask - why not just cross two wires? In fact swap is
really useful object. It just exchanges the two values
on its inlets and passes them to its outlets, but it can
take an argument so it always exchanges a number
with a constant. It’s useful when this constant is 1 as

shown later for calculating complement 1 − x and inverse 1/x of a number, or
where it is 100 for calculating values as a percent.

Change

f 0 + 1

/ 2

int

3

1.5

change1

1

metro 1000

fig 3.12: Pass val-
ues that change

This is useful if we have a stream of numbers, perhaps from a
physical controller like a joystick that is polled at regular in-
tervals, but we only want to know values when they change.
It is frequently seen preceded by int to denoise a jittery sig-
nal or when dividing timebases. In Fig. 3.12 we see a counter
that has been stopped after reaching 3. The components be-
low it are designed to divide the timebase in half. That is
to say, for a sequence {1, 2, 3, 4, 5, 6 ...} we will get
{1, 2, 3 ...}. There should be half as many numbers in

the output during the same time interval. In other words the output changes
half as often as the input. Since the counter has just passed 3 the output of /

is 1.5 and int truncates this to 1. But this is the second time we have seen 1

3.3 Data flow control 27

appear, since the same number was sent when the input was 2. Without using
change we would get {1, 1, 2, 2, 3, 3 ...} as output.

Send and receive objects

send mungo send midge

29 9 69

s mary

fig 3.13: Sends

Very useful for when patches get too visually dense,
or when you are working with patches spread across
many canvases. send and receive objects, abbreviated
as s and r work as named pairs. Anything that

goes into the send unit is transmitted by an invisible wire and appears immedi-
ately on the receiver, so whatever goes into send bob reappears at receive bob .

29 9 69

receive mary r midger mungo

fig 3.14: Receives

Matching sends and receives have global names by
default and can exist in different canvases loaded at
the same time. So if the receive objects in Fig. 3.14
are in a different patch they will still pick up the
send values from Fig. 3.13. The relationship is one to many, so only one send
can have a particular name but can be picked up by multiple receive objects
with the same name. In the latest versions of Pd the destination is dynamic
and can be changed by a message on the right inlet.

Broadcast messages

As we have just seen there is an “invisible” environment through which messages
may travel as well as through wires. A message box containing a message that
begins with a semicolon is broadcast and Pd will route it to any destination that
matches the first symbol. This way, activating the message box ; foo 20 is the
same as sending a float message with a value of 20 to the object s foo .

Special message destinations

This method can be used to address arrays with special commands, to talk to
GUI elements that have a defined receive symbol or as an alternative way to talk
to receive objects. If you want to change the size of arrays dynamically they
recognise a special resize message. There is also a special destination (which
always exists) called pd which is the audio engine. It can act on broadcast
messages like ; pd dsp 1 to turn on the audio computation from a patch. Some
examples are shown in Fig. 3.15

;
a1 sinesum 64 0.2 0.2

gain

64.00

;
gain 64

;
a2 resize 128;
a2 sinesum 128 0.1 0.2;
a2 normalize

a1 a2

fig 3.15: Special message broadcasts

28 Using Pure Data

Message sequences

Several messages can be stored in the same message-box as a sequence if sepa-
rated by commas, so 2, 3, 4, 5 is a message-box that will send four values one
after another when clicked or banged. This happens instantly (in logical time).
This is often confusing to beginners when comparing sequences to lists. When
you send the contents of a message box containing a sequence all the elements
are sent in one go, but as separate messages in a stream. Lists on the other
hand, which are not separated by commas, also send all the elements at the
same time, but as a single list message. Lists and sequences can be mixed, so a
message box might contain a sequence of lists.

SECTION 3.4

List objects and operations

Lists can be quite an advanced topic and we could devote an entire chapter
to this subject. Pd has all the capabilities of a full programming language like
LISP, using only list operations, but like that language all the more complex
functions are defined in terms of just a few intrinsic operations and abstrac-
tions. The list-abs collection by Frank Barknecht and others is available in
pd-extended. It contains scores of advanced operations like sorting, reversing,
inserting, searching and performing conditional operations on every element of
a list. Here we will look at a handful of very simple objects and leave it as
an exercise to the reader to research the more advanced capabilities of lists for
building sequencers and data analysis tools.

Packing and unpacking lists

The usual way to create and disassemble lists is to use pack and unpack . Arguments
are given to each which are type identifiers, so pack f f f f is an object that will
wrap up four floats given on its inlets into a single list. They should be presented
in right to left order so that the hot inlet is filled last. You can also give float
values directly as arguments of a pack object where you want them to be fixed,
so pack 1 f f 4 is legal, the first and last list elements will be 1 and 4 unless
over-ridden by the inlets, and the two middle ones will be variable.

pack s s f f

foo

bar

2

1

s packed

fig 3.16: List packing

Start by changing the right number in Fig. 3.16,
then the one to its left, then click on the sym-
bol boxes and type a short string before hitting
RETURN. When you enter the last symbol connected
to the hot inlet of pack you will see the data re-
ceived by Fig. 3.17 appear in the display boxes
after it is unpacked.

3.4 List objects and operations 29

foo

bar

2

1

r packed

unpack s s f f

fig 3.17: List unpacking

The unpack s s f f will expect two symbols and two
floats and send them to its four outlets. Items are
packed and unpacked in the sequence given in the
list, but in right to left order. That means the floats
from unpack s s f f will appear first, starting with the
rightmost one, then the two symbols ending on the
leftmost one. Of course this happens so quickly you
cannot see the ordering, but it makes sense to happen this way so that if you are
unpacking data, changing it and re-packing into a list everything occurs in the
right order. Note that the types of data in the list must match the arguments
of each object. Unless you use the a (any) type Pd will complain if you try to
pack or unpack a mismatched type.

Substitutions

$1

5

5 6 7

$3 $1 $2

pack 5 10 15

unpack f f f

15 5 10

fig 3.18: Dollar substitu-
tion.

A message box can also act as a template. When
an item in a message box is written $1 it behaves
as an empty slot that assumes the value of the first
element of a given list. Each of the dollar arguments
$1, $2 and so on, are replaced by the correspond-
ing item in the input list. The message box then
sends the new message with any slots filled in. List
elements can be substituted in multiple positions as

seen in Fig. 3.18. The list {5 10 15 } becomes {15 5 10 } when put through
the substitution $3 $1 $2 .

Persistence

You will often want to set up a patch so it’s in a certain state when loaded.
It’s possible to tell most GUI objects to output the last value they had when
the patch was saved. You can do this by setting the init checkbox in the
properties panel. But what if the data you want to keep comes from another
source, like an external MIDI fader board? A useful object is loadbang which
generates a bang message as soon as the patch loads.

4 6 8

set $1 $2 $3

loadbang

pd synthesiser

t a a

4 6 8

fig 3.19: Persistence using
messages

You can use this in combination with a message
box to initialise some values. The contents of message
boxes are saved and loaded with the patch. When you
need to stop working on a project but have it load the
last state next time around then list data can be saved
in the patch with a message box by using the special
set prefix. If a message box receives a list prefixed by
set it will be filled with the list, but not immediately
ouput it. The arrangement in Fig. 3.19 is used to keep

a 3 element list for pd synthesiser in a message box that will be saved with
the patch, then generate it to initialise the synthesiser again when the patch is
reloaded.

30 Using Pure Data

List distribution

An object with 2 or more message inlets will distribute a list of parameters to
all inlets using only the first inlet.

2

9 7

-

fig 3.20: Dis-
tribution

The number of elements in the list must match the number of
inlets and their types must be compatible. In Fig. 3.20 a message
box contains a list of two numbers, 9 and 7. When a pair of
values like this are sent to - with its right inlet unconnected
they are spread over the two inlets, in the order they appear,

thus 9 − 7 = 2.

More advanced list operations

To concatenate two lists together we use list append . It takes two lists and creates
a new one with the second list attached to the end of the first. If given an
argument it will append this to every list it receives. It may be worth knowing
that list is an alias for list append . You can choose to type in either in order to
make it clearer what you are doing. Very similar is list prepend which does almost
the same, but returns a new list with the argument or list at the second inlet
concatenated to the beginning. For disassembling lists we can use list split .
This takes a list on its left inlet and a number on the right inlet (or as an
argument) which indicates the position to split the list. It produces two new
lists, one containing elements below the split point appears on the left outlet,
and the remainder of the list appears on the right. If the supplied list is shorter
than the split number then the entire list is passed unchanged to the right outlet.
The list trim object strips off any selector at the start leaving the raw elements.

SECTION 3.5

Input and output

There are plenty of objects in Pd for reading keyboards, mice, system timers,
serial ports and USB. There’s not enough room in this book to do much more
than summarise them, so please refer to the Pd online documentation for your
platform. Many of these are available only as external objects, but several are
built into Pd core. Some depend on the platform used, for example comport and
key are only available on Linux and MacOS. One of the most useful externals
available is hid which is the “human interface device”. With this you can
connect joysticks, game controllers, dance mats, steering wheels, graphics tablets
and all kinds of fun things. File IO is available using textfile and qlist objects,
objects are available to make database transactions to MySQL, and of course
audio file IO is simple using a range of objects like writesf~ and readsf~ . MIDI files
can be imported and written with similar objects. Network access is available
through netsend and netreceive which offer UDP or TCP services. Open Sound
Control is available using the external OSC library by Martin Peach or dumpOSC

and sendOSC objects. You can even generate or open compressed audio streams
using mp3cast~ and similar externals, and you can run code from other languages
like python and lua. A popular hardware peripheral for use in combination with

3.5 Input and output 31

Pd is the Arduino board which gives a number of buffered analog and digital
lines, serial and parallel, for robotics and control applications. Nearly all of this
is quite beyond the scope of this book. The way you set up your DAW and build
your sound design studio is an individual matter, but Pd should not disappoint
you when it comes to I/O connectivity. We will now look at a few common
input and output channels.

The print object

Where would we be without a print object? Not much use for making sound,
but vital for debugging patches. Message domain data is dumped to the console
so you can see what is going on. You can give it a non-numerical argument
which will prefix any output and make it easier to find in a long printout.

MIDI

When working with musical keyboards there are objects to help integrate these
devices so you can build patches with traditional synthesiser and sampler be-
haviours. For sound design this is great for attaching MIDI fader boards to con-
trol parameters, and of course musical interface devices like breath controllers
and MIDI guitars can be used. Hook up any MIDI source to Pd by activating a
MIDI device from the Media->MIDI menu (you can check this is working from
Media->Test Audio and MIDI).

Notes in

You can create single events to trigger from individual keys, or have layers and
velocity fades by adding extra logic.

notein

60 note

127 velocity

1 channel

fig 3.21: MIDI note in

The notein object produces note number, velocity and
channel values on its left, middle and right outlets. You
may assign an object to listen to only one channel by giv-
ing it an argument from 1 to 15. Remember that note-off
messages are equivalent to a note-on with zero velocity in
many MIDI implementations and Pd follows this method.

You therefore need to add extra logic before connecting an oscillator or sample
player to notein so that zero valued MIDI notes are not played.

Notes out

makenote

metro 200

+ 48

random 3

* 12

t b b

random 127

notelength

984.1

noteout

fig 3.22: MIDI
note generation

Another object noteout sends MIDI to external devices. The
first, second and third inlets set note number, velocity and
channel respectively. The channel is 1 by default. Make
sure you have something connected that can play back MIDI
and set the patch shown in Fig. 3.22 running with its toggle
switch. Every 200ms it produces a C on a random octave
with a random velocity value between 0 and 127. Without
further ado these could be sent to noteout , but it would cause
each MIDI note to “hang”, since we never send a note-off
message. To properly construct MIDI notes you need makenote

32 Using Pure Data

which takes a note-number and velocity, and a duration (in milliseconds) as its
third argument. After the duration has expired it automatically adds a note-off.
If more than one physical MIDI port is enabled then noteout sends channels 1 to
16 to port 1 and channels 17 to 32 to port 2 etc.

Continuous controllers

Two MIDI input/output objects are provided to receive and send continuous
controllers, ctlin and ctlout . Their three connections provide, or let you set, the
controller value, controller number and MIDI channel. They can be instantiated
with arguments, so ctlin 10 1 picks up controller 10 (pan position) on MIDI
channel 1.

MIDI to Frequency

Two numerical conversion utilities are provided to convert between MIDI note
numbers and Hz. To get from MIDI to Hz use mtof . To convert a frequency in
Hz to a MIDI note number use ftom .

Other MIDI objects

For pitchbend, program changes, system exclusive, aftertouch and other MIDI
functions you may use any of the objects summarised in Tbl. 3.23. System
exclusive messages may be sent by hand crafting raw MIDI bytes and outputting
via the midiout object. Most follow the inlet and outlet template of notein and
noteout having a channel as the last argument, except for midiin and sysexin which
receive omni (all channels) data.

MIDI in object MIDI out object

Object Function Object Function
notein Get note data noteout Send note data.
bendin Get pitchbend data

−63 to +64

bendout Send pitchbend data
−64 to +64.

pgmin Get program changes. pgmout Send program changes.
ctlin Get continuous con-

troller messages.

ctlout Send continuous con-
troller messages.

touchin Get channel aftertouch
data.

touchout Send channel after-
touch data.

polytouchin Polyphonic touch data
in

polytouchout Polyphonic touch out-
put

polytouchin Send polyphonic after-
touch.

polytouchin Get polyphonic after-
touch.

midiin Get unformatted raw
MIDI

midiout Send raw MIDI to de-
vice.

sysexin Get system exclusive
data

No output
counterpart

Use midiout object

fig 3.23: List of MIDI objects

3.6 Working with numbers 33

SECTION 3.6

Working with numbers

Arithmetic objects

Objects that operate on ordinary numbers to provide basic maths functions are
summarised in Tbl. 3.24 All have hot left and cold right inlets and all take one
argument that initialises the value otherwise received on the right inlet. Note
the difference between arithmetic division with / and the div object. The
modulo operator gives the remainder of dividing the left number by the right.

Object Function
+ Add two floating point numbers
- Subtract number on right inlet from number on left inlet
/ Divide lefthand number by number on right inlet
* Multiply two floating point numbers
div Integer divide, how many times the number on the right

inlet divides exactly into the number on the left inlet
mod Modulo, the smallest remainder of dividing the left num-

ber into any integer multiple of the right number

fig 3.24: Table of message arithmetic operators

Trigonometric maths objects

A summary of higher maths functions is given in Tbl. 3.25.

Random numbers

A useful ability is to make random numbers. The random object gives integers
over the range given by its argument including zero, so random 10 gives 10 possible
values from 0 to 9.

Arithmetic example

random 100 random 100 random 100

+

96 12 88

trigger bang bang bang

+

/ 3

65.333

fig 3.26: Mean of three random
floats

An example is given in Fig. 3.26 to show cor-
rect ordering in a patch to calculate the mean
of three random numbers. We don’t have to
make every inlet hot, just ensure that every-
thing arrives in the correct sequence by trig-
gering the random objects properly. The first
random (on the right) supplies the cold inlet of
the lower + , the middle one to the cold inlet
of the upper + . When the final (left) random

is generated it passes to the hot inlet of the
first + , which computes the sum and passes it to the second + hot inlet.
Finally we divide by 3 to get the mean value.

34 Using Pure Data

Object Function
cos The cosine of a number given in radians. Domain: −π/2

to +π/2. Range: −1.0 to +1.0.
sin The sine of a number in radians, domain −π/2 to +

π/2, range −1.0 to +1.0
tan Tangent of number given in radians. Range: 0.0 to ∞

at ±π/2
atan Arctangent of any number in domain ±∞ Range: ±π/2
atan2 Arctangent of the quotient of two numbers in Carte-

sian plane. Domain: any floats representing X, Y pair.
Range: angle in radians ±π

exp Exponential function ex for any number. Range 0.0
to ∞

log Natural log (base e) of any number. Domain: 0.0
to ∞. Range: ±∞ (−∞ is −1000.0)

abs Absolute value of any number. Domain ±∞. Range 0.0
to ∞

sqrt The square root of any positive number. Domain
0.0 to ∞

pow Exponentiate the left inlet to the power of the right inlet.
Domain: positive left values only.

fig 3.25: Table of message trigonometric and higher math operators

Comparative objects

In Tbl. 3.27 you can see a summary of comparative objects. Output is either
1 or 0 depending on whether the comparison is true or false. All have hot left
inlets and cold right inlets and can take an argument to initialise the righthand
value.

Object Function
> True if the number at the left inlet is greater than the

right inlet.
< True if the number at the left inlet is less than the right

inlet.
>= True if the number at the left inlet is greater than or

equal to the right inlet.
<= True if the number at the left inlet is less than or equal

to the right inlet.
== True if the number at the left inlet is equal to the right

inlet.
!= True if the number at the left inlet is not equal to the

right inlet

fig 3.27: List of comparative operators

3.7 Common idioms 35

Boolean logical objects

There are a whole bunch of logical objects in Pd including bitwise operations
that work exactly like C code. Most of them aren’t of much interest to us in this
book, but we will mention the two important ones || and && . The output of
|| , logical OR, is true if either of its inputs are true. The output of && , logical
AND, is true only when both its inputs are true. In Pd any non-zero number is
“true”, so the logical inverter or “not” function is unnecessary because there are
many ways of achieving this using other objects. For example, you can make a
logical inverter by using != with 1 as its argument.

SECTION 3.7

Common idioms

There are design patterns that crop up frequently in all types of program-
ming. Later we will look at abstraction and how to encapsulate code into new
objects so you don’t find yourself writing the same thing again and again. Here
I will introduce a few very common patterns.

Constrained counting

metro 500

f

mod 8

+ 1

mod 4 mod 3

13

trigger f f f

7

fig 3.28:
Constrained
counter.

We have already seen how to make a counter by repeatedly in-
crementing the value stored in a float box. To turn an increasing
or decreasing counter into a cycle for repeated sequences there
is an easier way than resetting the counter when it matches
an upper limit, we wrap the numbers using mod . By inserting
mod into the feedback path before the increment we can ensure
the counter stays bounded. Further mod units can be added to
the number stream to generate polyrhythmic sequences. You
will frequently see variations on the idiom shown in Fig. 3.28.
This is the way we produce multi-rate timebases for musical
sequencers, rolling objects or machine sounds that have complex repetitive pat-
terns.

Accumulator

+ f

0

1 -1

fig 3.29:
Accumu-
lator.

A similar construct to a counter is the accumulator or integrator.
This reverses the positions of f and + to create an integrator that
stores the sum of all previous number messages sent to it. Such an
arrangement is useful for turning “up and down” messages from an
input controller into a position. Whether to use a counter or accu-
mulator is a subtle choice. Although you can change the increment

step of the counter by placing a new value on the right inlet of + it will not
take effect until the previous value in f has been used. An accumulator on the
other hand can be made to jump different intervals immediately by the value
sent to it. Note the important difference, an accumulator takes floats as an
input while a counter takes bang messages.

36 Using Pure Data

Rounding

+ 0.5

i

0.51

1

0.99

0

int

fig 3.30: Rounding

An integer function, int , also abbreviated i gives the
whole part of a floating point number. This is a trun-
cation, which just throws away any decimal digits. For
positive numbers it gives the floor function, written ⌊x⌋
which is the integer less than or equal to the input value.
But take note of what happens for negative values, apply-
ing int to −3.4 will give 3.0, an integer greater than or

equal to the input. Truncation is shown on the left of Fig. 3.30. To get a reg-
ular rounding for positive numbers, to pick the closest integer, use the method
shown on the right side of Fig. 3.30. This will return 1 for an input of 0.5 or
more and 0 for an input of 0.49999999 or less.

Scaling

inlet value

inlet scale

inlet offset

outlet

127

9.999

+ 1

* 0.070866 * $1

+ $2

fig 3.31: Scaling

This is such a common idiom you will see it almost
everywhere. Given a range of values such as 0 to 127
we may wish to map this onto another set of values,
the domain, such as 1 to 10. This is the same as
changing the slope and zero intersect of a line following
y = mx + c. To work out the values you first obtain
the bottom value or offset, in this case +1. Then a

multiplier value is needed to scale for the upper value, which given an input of
127 would satisfy 10 = 1 + 127x, so moving the offset we get 9 = 127x, and
dividing by 127 we get x = 9/127 or x = 0.070866. You can make a subpatch
or an abstraction for this as shown in Fig. 6.1, but since only two objects are
used it’s more sensible to do scaling and offset as you need it.

Looping with until

t b b

f + 1

0
until

t f f

cheby

tabwrite cheby

swap 129

-

/ 128

t f f

*

* 2

- 1

sel 256

fig 3.32: Using until

Unfortunately, because it must be designed
this way, until has the potential to cause
a complete system lock-up. Be very care-
ful to understand what you are doing with
this. A bang message on the left inlet of
until will set it producing bang messages
as fast as the system can handle! These do
not stop until a bang message is received on
the right inlet. Its purpose is to behave as a
fast loop construct performing message do-
main computation quickly. This way you
can fill an entire wavetable or calculate a
complex formula in the time it takes to pro-
cess a single audio block. Always make sure

the right inlet is connected to a valid terminating condition. In Fig. 3.32 you
can see an example that computes the second Chebyshev polynomial according

3.7 Common idioms 37

to y = 2x2 − 1 for the range −1.0 to +1.0 and fills a 256 step table with the
result. As soon as the bang button is pressed a counter is reset to zero and then
until begins sending out bangs. These cause the counter to rapidly increment
until select matches 256 whereupon a bang is sent to the right inlet of until

stopping the process. All this will happen in a fraction of a millisecond. Mean-
while we use the counter output to calculate a Chebyshev curve and put it into
the table.

256

min 1

until

fig 3.33: for
256

A safer way to use until is shown in Fig. 3.33. If you know in
advance that you want to perform a fixed number of operations
then use it like a for loop. In this case you pass a non-zero
float to the left inlet. There is no terminating condition, it
stops when the specified number of bangs has been sent, 256

bangs in the example shown.

Message complement and inverse

swap 1

-

0.25

0.75

swap 1

0.5

2

/

fig 3.34: Message re-
ciprocal and inverse

Here is how we obtain the number that is 1−x for any x.
The complement of x is useful when you want to balance
two numbers so they add up to a constant value, such as
in panning. The swap object exchanges its inlet values,
or any left inlet value with its first argument. Therefore,
what happens with the left example of Fig. 3.34 is the
- calculates 1−x, which for an input of 0.25 gives 0.75.

Similarly the inverse of a float message 1/x can be calculated by replacing the
- with a / .

Random selection

metro 500

random 4

select 0 1 2 3

fig 3.35:
Random
select.

To choose one of several events at random a combination of random

and select will generate a bang message on the select outlet corre-
sponding to one of its arguments. With an initial argument of 4
random produces a range of 4 random integer numbers starting at 0,
so we use select 0 1 2 3 to select amongst them. Each has an equal
probability, so every outlet will be triggered 25% of the time on
average.

Weighted random selection

metro 500

moses 10

random 100

moses 50

fig 3.36:
Weighted
random select.

A simple way to get a bunch of events with a certain proba-
bility distribution is to generate uniformly distributed numbers
and stream them with moses . For example moses 10 sends integers
greater than 9.0 to its right outlet. A cascade of moses objects
will distribute them in a ratio over the combined outlets when
the sum of all ratios equals the range of random numbers. The
outlets of moses 10 distribute the numbers in the ratio 1 : 9. When
the right outlet is further split by moses 50 as in Fig. 3.36 numbers
in the range 0.0 to 100.0 are split in the ratio 10 : 40 : 50, and

38 Using Pure Data

since the distribution of input numbers is uniform they are sent to one of three
outlets with 10%, 40% and 50% probability.

Delay cascade

del 100 del 100 del 100 del 100

fig 3.37: Delay cascade.

Sometimes we want a quick succession of bangs in a
certain fixed timing pattern. An easy way to do this
is to cascade delay objects. Each delay 100 in Fig. 3.37
adds a delay of 100 milliseconds. Notice the ab-
brieved form of the object name is used.

Last float and averages

t f b

f

3

2

t f b

f

12.5

+

/ 2

trigger f f

10 15

fig 3.38: Last value and av-
eraging

If you have a stream of float values and want to
keep the previous value to compare to the current
one then the idiom shown on the left of Fig. 3.38
will do the job. Notice how a trigger is employed to
first bang the last value stored in the float box and
then update it with the current value via the right
inlet. This can be turned into a simple “lowpass”
or averaging filter for float messages as shown on
the right of Fig. 3.38. If you add the previous value

to the current one and divide by two you obtain the average. In the example
shown the values were 10 followed by 15, resulting in (10 + 15)/2 = 12.5.

Running maximum (or minimum)

t f f

9

max 1e-21

35

fig 3.39:
Biggest
so far

Giving max a very small argument and connecting whatever passes
through it back to its right inlet gives us a way to keep track of the
largest value. In Fig. 3.39 the greatest past value in the stream has
been 35. Giving a very large argument to min provides the opposite
behaviour for tracking a lowest value. If you need to reset the max-
imum or minimum tracker just send a very large or small float value
to the cold inlet to start again.

Float lowpass

38

* 0.1

+ * 0.9

37.26

fig 3.40: Low
pass for floats

Using only * and + as shown in Fig. 3.40 we can low pass
filter a stream of float values. This is useful to smooth data from
an external controller where values are occasionally anomalous.
It follows the filter equation yn = Axn + Bxn−1. The strength
of the filter is set by the ratio A : B. Both A and B should be
between 0.0 and 1.0 and add up to 1.0. Note that this method
will not converge on the exact input value, so you might like to
follow it with int if you need numbers rounded to integer values.

39

CHAPTER 4

Pure Data Audio

SECTION 4.1

Audio objects

We have looked at Pd in enough detail now to move on to the next level.
You have a basic grasp of dataflow programming and know how to make patches
that process numbers and symbols. But why has no mention been made of audio
yet? Surely it is the main purpose of our study? The reason for this is that
audio signal processing is a little more complex in Pd than the numbers and
symbols we have so far considered, so I wanted to leave this until now.

Audio connections

I already mentioned that there two kinds of objects and data for messages
and signals. Corresponding to these there are two kinds of connections, audio
connections and message connections. There is no need to do anything special
to make the right kind of connection. When you connect two objects together
Pd will work out what type of outlet you are attempting to connect to what
kind of inlet and create the appropriate connection. If you try to connect an
audio signal to a message inlet, then Pd will not let you, or it will complain
if there is allowable but ambiguous connection. Audio objects always have a
name ending with a tilde (∼) and the connections between them look fatter
than ordinary message connections.

Blocks

The signal data travelling down audio cords is made of samples, single floating
point values in a sequence that forms an audio signal. Samples are grouped
together in blocks.

+~

31.4 15.9 26.5 35.8

97.9 42.3 84.6 26.4

B1 B2 B3 B4

A 1 A 2 A 3 A 4

129.3 58.2 111.1 62.2

+BA+BA1+B1A 2 2 33 A + B44

Object Box
Inlet

Wire

Signal Block

fig 4.1: Object processing data.

A block, sometimes also called a vector, typ-
ically has 64 samples inside it, but you can
change this in certain circumstances. Ob-
jects operating on signal blocks behave like
ordinary message objects, they can add, sub-
tract, delay or store blocks of data, but do
so by processing one whole block at a time.
In Fig. 4.1 streams of blocks are fed to the
two inlets. Blocks appearing at the outlet
have values which are the sum of the cor-
responding values in the two input blocks.

Because they process signals made of blocks, audio objects do a lot more work
than objects that process messages.

40 Pure Data Audio

Audio object CPU use

All the message objects we looked at in the last chapters only use CPU when
event driven dataflow occurs, so most of the time they sit idle and consume
no resources. Many of the boxes we put on our sound design canvases will be
audio objects, so it’s worth noting that they use up some CPU power just being
idle. Whenever compute audio is switched on they are processing a constant
stream of signal blocks, even if the blocks only contain zeros. Unlike messages
which are processed in logical time, signals are processed synchronously with
the soundcard sample rate. This real-time constraint means glitches will occur
unless every signal object in the patch can be computed before the next block
is sent out. Pd will not simply give up when this happens, it will struggle
along trying to maintain real-time processing, so you need to listen carefully,
as you hit the CPU limit of the computer you may hear crackles or pops. It is
also worth knowing how audio computation relates to messages computation.
Messages operations are executed at the beginning of each pass of audio block
processing, so a patch where audio depends on message operations which don’t
complete in time will also fail to produce correct output.

SECTION 4.2

Audio objects and principles

There are a few ways that audio objects differ from message objects so let’s
look at those rules now before starting to create sounds.

Fanout and merging

phasor~ 440

wrap~ *~ -1

fig 4.2: Sig-
nal fanout is
Okay.

You can connect the same signal outlet to as many other audio
signal inlets as you like, and blocks are sent in an order which
corresponds to the creation of the connections, much like message
connections. But unlike messages, most of the time this will have
no effect whatsoever, so you can treat audio signals that fan out
as if they were perfect simultaneous copies. Very seldom you may

meet rare and interesting problems, especially with delays and feedback, that
can be fixed by reordering audio signals (see Chapter 7 of Puckette, “Theory
and technique” regarding time shifts and block delays).

osc~ 120 osc~ 240

*~ 0.5

fig 4.3: Merg-
ing signals is
Okay.

When several signal connections all come into the same
signal inlet that’s also fine. In this case they are implicitly
summed, so you may need to scale your signal to reduce its
range again at the output of the object. You can connect as
many signals to the same inlet as you like, but sometimes it
makes a patch easier to understand if you explicitly sum them
with a +~ unit.

Time and resolution

Time is measured in seconds, milliseconds (one thousandth of a second, writ-
ten 1ms) or samples. Most Pd times are in ms. Where time is measured in

4.2 Audio objects and principles 41

samples this depends on the sampling rate of the program or the sound card of
the computer system on which it runs. The current sample rate is returned by
the samplerate~ object. Typically a sample is 1/44100th of a second and is the
smallest unit of time that can be measured as a signal. But the time resolution
also depends on the object doing the computation. For example metro and vline~

are able to deal in fractions of a millisecond, even less than one sample. Tim-
ing irregularities can occur where some objects are only accurate to one block
boundary and some are not.

Audio signal block to messages

To see the contents of a signal block we can take a snapshot or an average. The
env~ object provides the RMS value of one block of audio data scaled 0 to 100
in dB, while snapshot~ gives the instantaneous value of the last sample in the
previous block. To view an entire block for debugging print~ can be used. It
accepts an audio signal and a bang message on the same inlet and prints the
current audio block contents when banged.

Sending and receiving audio signals

Audio equivalents of send and receive are written send~ and receive~ , with
shortened forms s~ and r~ . Unlike message sends only one audio send can
exist with a given name. If you want to create a signal bus with many to one
connectivity use throw~ and catch~ instead. Within subpatches and abstractions
we use the signal objects inlet~ and outlet~ to create inlets and outlets.

Audio generators

Only a few objects are signal sources. The most important and simple one is
the phasor~ . This outputs an asymmetrical periodic ramp wave and is used at
the heart of many other digital oscillators we are going to make. Its left inlet
specifies the frequency in Hz, and its right inlet sets the phase, between 0.0 and
1.0. The first and only argument is for frequency, so a typical instance of a
phasor looks like phasor~ 110 . For sinusoidal waveforms we can use osc~ . Again,
frequency and phase are set by the left and right inlets, or frequency is set by
the creation parameter. A sinusoidal oscillator at concert A pitch is defined by
osc~ 440 . White noise is another commonly used source in sound design. The
noise generator in Pd is simply noise~ and has no creation arguments. Its output
is in the range −1.0 to 1.0. Looped waveforms stored in an array can be used
to implement wavetable synthesis using the tabosc4~ object. This is a 4 point
interpolating table ocillator and requires an array that is a power of 2, plus 3
(eg. 0 to 258) in order to work properly. It can be instantiated like phasor~ or
osc~ with a frequency argument. A table oscillator running at 3kHz is shown in
Fig. 4.4. It takes the waveform stored in array A and loops around this at the
frequency given by its argument or left inlet value. To make sound samplers
we need to read and write audio data from an array. The index to tabread~ and
its interpolating friend tabread4~ is a sample number, so you need to supply a
signal with the correct slope and magnitude to get the proper playback rate.
You can use the special set message to reassign tabread4~ to read from another

42 Pure Data Audio

*~ 64

tabread~ A

tabsend~ B

phasor~ 3000

dac~

*~ 0.1

BA

fig 4.4: Table oscillator

kit1-01

loadbang

soundfiler

hip~ 5

r phase

vline~

kit1-02 kit1-03 kit1-04

r snum

tabread4~

;
snum set kit1-01;
phase 1, 4.41e+08 1e+07;

;
snum set kit1-02;
phase 1, 4.41e+08 1e+07;

;
snum set kit1-03;
phase 1, 4.41e+08 1e+07;

;
snum set kit1-04;
phase 1, 4.41e+08 1e+07;

dac~

*~ 0.5

read ./sounds/ttsnr.wav kit1-01, read ./sounds/jrsnr.wav
kit1-02, read ./sounds/dlsnr.wav kit1-03, read
./sounds/ezsnr.wav kit1-04

fig 4.5: Sample replay from arrays

array. The message boxes in Fig. 4.5 allow a single object to play back from
more than one sample table. First the target array is given via a message to
snum, and then a message is sent to phase which sets vline~ moving up at 44100
samples per second. The arrays are initially loaded, using a multi-part message,
from a sounds folder in the current patch directory.

Audio line objects

For signal rate control data the line~ object is useful. It is generally programmed
with a sequence of lists. Each list consists of a pair of numbers, the first being a
level to move to and the second number is the time in milliseconds to take getting
there. The range is usually between 1.0 and 0.0 when used as an audio control
signal, but it can be any value such as when using line~ to index a table. A
more versatile line object is called vline~ , which we will meet in much more detail
later. Amongst its advantages are very accurate sub-millisecond timing and the
ability to read multi-segment lists in one go and to delay stages of movement.
Both these objects are essential for constructing envelope generators and other
control signals.

4.2 Audio objects and principles 43

Audio input and output

Audio IO is achieved with the adc~ and dac~ objects. By default these offer two
inlets or outlets for stereo operation, but you can request as many additional
sound channels as your sound system will handle by giving them numerical
arguments.

Example: A simple MIDI monosynth

notein

stripnote

mtof

osc~ vline~

*~

dac~

/ 127

*~

0, 1 10 0, 0 100 20

t f b

fig 4.6: MIDI note
control

Using the objects we’ve just discussed let’s create a little
MIDI keyboard controlled music synthesiser as shown in
Fig. 4.6. Numbers appearing at the left outlet of notein

control the frequency of an oscillator. MIDI numbers
are converted to a Hertz frequency by mtof . The MIDI
standard, or rather general adherence to it, is a bit woolly
by allowing note-off to also be a note-on with a velocity of
zero. Pd follows this definition, so when a key is released
it produces a note with a zero velocity. For this simple
example we remove it with stripnote , which only passes
note-on messages when their velocity is greater than zero.
The velocity value, ranging between 1 and 127 is scaled to between 0 and 1 in
order to provide a rudimentary amplitude control.

0, 1 10 0, 0 100 20

vline~

Time

L
e

v
e

l

start at zero

move to 1

in 10 milliseconds

after a 0 millisecond delay

after a 20 millisecond delay

taking 100 milliseconds

return to zero

100ms10ms10ms

20ms

at zero
so really start

fig 4.7: Anatomy of vline message

So, here’s a great place to elaborate on the anatomy of the message used
to control vline~ as shown in Fig. 4.7. The syntax makes perfect sense, but
sometimes it’s hard to visualise without practice. The general form has three
numbers per list. It says: “go to some value”, given by the first number, then

44 Pure Data Audio

“take a certain time to get there”, which is the second number in each list. The
last number in the list is a time to wait before executing the command, so it
adds an extra wait for a time before doing it”. What makes vline~ cool is you
can send a sequence of list messages in any order, and so long as they make
temporal sense then vline~ will execute them all. This means you can make
very complex control envelopes. Any missing arguments in a list are dropped
in right to left order, so a valid exception is seen in the first element of Fig. 4.7
where a single 0 means “jump immediately to zero” (don’t bother to wait or
take any time getting there).

Audio filter objects

Six or seven filters are used in this book. We will not look at them in much
detail until we need to because there is a lot to say about their usage in each
case. Simple one pole and one zero real filters are given by rpole~ and rzero~ .
Complex one pole and one zero filters are cpole~ and czero~ . A static biquad
filter biquad~ also comes with a selection of helper objects to calculate coefficients
for common configurations and lop~ , hip~ , and bp~ 1 provide the standard low,
high and bandpass responses. These are easy to use and allow message rate
control of their cutoff frequencies and, in the case of bandpass, resonance. The
first and only argument of the low and high pass filters is frequency, so typical
instances may look like lop~ 500 and hip~ 500 . Bandpass takes a second parameter
for resonance like this bp~ 100 3 . Fast signal rate control of cutoff is possible using
the versatile vcf~ “voltage controlled filter”. Its first argument is cutoff frequency
and its second argument is resonance, so you might use it like vcf~ 100 2 . With
high resonances this provides a sharp filter that can give narrow bands. An
even more colourful filter for use in music synthesiser designs is available as an
external called moog~ , which provides a classic design that can self oscillate.

Audio arithmetic objects

Audio signal objects for simple arithmetic are summarised in Tbl. 4.8.

Object Function
+~ Add two signals (either input will also accept a message)
-~ Subtract righthand signal from lefthand signal
/~ Divide lefthand signal by right signal
*~ Signal multiplication
wrap~ Signal wrap, constrain any signal between 0.0 and 1.0

fig 4.8: List of arithmetic operators

Trigonometric and math objects

A summary of higher maths functions is given in Tbl. 4.9. Some signal units
are abstractions defined in terms of more elementary intrinsic objects and those
marked * are only available through external libraries in some Pd versions.

4.2 Audio objects and principles 45

Object Function
cos~ Signal version of cosine function. Domain: −1.0 to +

1.0. Note the input domain is “rotation normalised”
sin~ Not intrinsic but defined in terms of signal cosine by

subtracting 0.25 from the input.
atan~ * Signal version of arctangent with normalised range.
log~ Signal version of natural log.
abs~ * Signal version of abs.
sqrt~ A square root for signals.
q8_sqrt~ A fast square root with less accuracy.
pow~ Signal version of power function.

fig 4.9: List of trig and higher math operators

Audio delay objects

Delaying an audio signal requires us to create a memory buffer using delwrite~ .
Two arguments must be supplied at creation time, a unique name for the mem-
ory buffer and a maximum size in milliseconds. For example, delwrite~ mydelay 500

creates a named delay buffer “mydelay” of size 500ms. This object can now
be used to write audio data to the delay buffer through its left inlet. Getting
delayed signals back from a buffer needs delread~ . The only argument needed is
the name of a buffer to read from, so delread~ mydelay will listen to the contents of
mydelay. The delay time is set by a second argument, or by the left inlet. It
can range from zero to the maximum buffer size. Setting a delay time larger
than the buffer results in a delay of the maximum size. It is not possible to
alter the maximum size of a delwrite~ buffer once created. But it is possible to
change the delay time of delread~ for chorus and other effects. This often results
in clicks and pops 1 so we have a vd~ variable-delay object. Instead of moving
the read point vd~ changes the rate it reads the buffer, so we get tape echo and
Doppler shift type effects. Using vd~ is as easy as before, create an object that
reads from a named buffer like vd~ mydelay . The left inlet (or argument following
the name) sets the delay time.

1Hearing clicks when moving a delay read point is normal, not a bug. There is no reason
to assume that wavforms will align nicely once we jump to a new location in the buffer. An
advanced solution crossfades between more than one buffer.

